Submit an Article
Become a reviewer
Vol 275
Pages:
179-195
Download volume:
RUS ENG

Optimisation of blast-induced rock fragmentation using hybrid artificial intelligence methods at Orapa Diamond Mine (Botswana)

Authors:
Onalethata Saubi1
Rodrigo S. Jamisola Jr.2
Raymond S. Suglo3
Oduetse Matsebe4
About authors
  • 1 — Master's Degree Research Assistant Botswana International University of Science and Technology ▪ Orcid
  • 2 — Ph.D. Lecturer Botswana International University of Science and Technology ▪ Orcid
  • 3 — Ph.D. Head of Department Botswana International University of Science and Technology ▪ Orcid
  • 4 — Ph.D. Head of Department Botswana International University of Science and Technology ▪ Orcid
Date submitted:
2024-10-03
Date accepted:
2025-08-25
Online publication date:
2025-10-31
Date published:
2025-10-31

Abstract

This study demonstrates various artificial intelligence methods to predict and optimise blast-induced rock fragmentation at Orapa Diamond Mine in Botswana. These techniques include an artificial neural network (ANN), an adaptive neuro-fuzzy inference system (ANFIS), a genetic algorithm with ANN (GA-ANN), and particle swarm optimization with ANN (PSO-ANN). A collection of data from 120 blasting events with nine input parameters at the mine was utilized for this task. The results indicate that the PSO-ANN model outperforms other models in predicting blast-induced fragmentation. We used the optimal PSO-ANN model to optimise fragmentation, identified using the Monte Carlo method. The optimal model consists of nine inputs, two hidden layers with 65 and 30 neurons, and one output (7-65-30-1). Using gradient descent, we navigated this ten-dimensional solution space to determine the optimised blast design parameters and achieved an optimal fragmentation value of approximately 86 %. Sensitivity analysis results reveal that the most influential input parameters on fragmentation are rock factor (15.3 %), blastability index (14.7 %), and spacing-to-burden ratio (14.7 %). In contrast, the stiffness ratio has the least influence on fragmentation (6.3 %).

Область исследования:
Geotechnical Engineering and Engineering Geology
Keywords:
optimisation prediction blasting rock fragmentation artificial intelligence sensitivity analysis diamond mine
Go to volume 275

Funding

This research project was funded by Debswana Diamond Company with grant N P00064.

References

  1. Hasanipanah M., Amnieh H.B., Arab H., Zamzam M.S. Feasibility of PSO–ANFIS model to estimate rock fragmentation produced by mine blasting. Neural Computing and Applications. 2018. Vol. 30. Iss. 4, p. 1015-1024. DOI: 10.1007/s00521-016-2746-1
  2. Qiancheng Fang, Hoang Nguyen, Xuan-Nam Bui et al. Modeling of rock fragmentation by firefly optimization algorithm and boosted generalized additive model. Neural Computing and Applications. 2021. Vol. 33. Iss. 8, p. 3503-3519. DOI: 10.1007/s00521-020-05197-8
  3. Bakhtavar E., Khoshrou H., Badroddin M. Using dimensional-regression analysis to predict the mean particle size of fragmentation by blasting at the Sungun copper mine. Arabian Journal of Geosciences. 2015. Vol. 8. Iss. 4, p. 2111-2120. DOI: 10.1007/s12517-013-1261-2
  4. Zhi Yu, Xiuzhi Shi, Xianyang Qiu et al. Optimization of postblast ore boundary determination using a novel sine cosine algorithm-based random forest technique and Monte Carlo simulation. Engineering Optimization. 2021. Vol. 53. Iss. 9, p. 1467-1482. DOI: 10.1080/0305215X.2020.1801668
  5. Esmaeili M., Salimi A., Drebenstedt C. et al. Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arabian Journal of Geosciences. 2015. Vol. 8. Iss. 9, p. 6881-6893. DOI: 10.1007/s12517-014-1677-3
  6. Dumakor-Dupey N.K., Arya S., Jha A. Advances in Blast-Induced Impact Prediction – A Review of Machine Learning Applications. Minerals. 2021. Vol. 11. Iss. 6. N 601. DOI: 10.3390/min11060601
  7. Jian Zhou, Yulin Zhang, Yingui Qiu. State-of-the-art review of machine learning and optimization algorithms applications in environmental effects of blasting. Artificial Intelligence Review. 2024. Vol. 57. Iss. 1. N 5. DOI: 10.1007/s10462-023-10636-8
  8. Kaklis K., Saubi O., Jamisola R., Agioutantis Z. Machine Learning Prediction of the Load Evolution in Three-Point Bending Tests of Marble. Mining, Metallurgy & Exploration. 2022. Vol. 39. Iss. 5, p. 2037-2045. DOI: 10.1007/s42461-022-00674-1
  9. Saadati G., Javankhoshdel S., Javad Mohebbi Najm Abad et al. AI-Powered Geotechnics: Enhancing Rock Mass Classification for Safer Engineering Practices. Rock Mechanics and Rock Engineering. 2024, p. 1-31. DOI: 10.1007/s00603-024-04189-7
  10. Kaklis K., Saubi O., Jamisola R., Agioutantis Z. A preliminary application of a machine learning model for the prediction of the load variation in three-point bending tests based on acoustic emission signals. Procedia Structural Integrity. 2021. Vol. 33, p. 251-258. DOI: 10.1016/j.prostr.2021.10.031
  11. Taihua Yang, Tian Wen, Xing Huang et al. Predicting Model of Dual-Mode Shield Tunneling Parameters in Complex Ground Using Recurrent Neural Networks and Multiple Optimization Algorithms. Applied Sciences. 2024. Vol. 14. Iss. 2. N 581. DOI: 10.3390/app14020581
  12. Zhiheng Ma, Jinguo Wang, Yanrong Zhao et al. Research on Multi-Objective Optimization Model of Foundation Pit Dewatering Based on NSGA-II Algorithm. Applied Sciences. 2023. Vol. 13. Iss. 19. N 10865. DOI: 10.3390/app131910865
  13. Lawal A.I. A new modification to the Kuz-Ram model using the fragment size predicted by image analysis. International Journal of Rock Mechanics and Mining Sciences. 2021. Vol. 138. N 104595. DOI: 10.1016/j.ijrmms.2020.104595
  14. Ghaeini N., Mousakhani M., Amnieh H.B., Jafari A. Prediction of blasting-induced fragmentation in Meydook copper mine using empirical, statistical, and mutual information models. Arabian Journal of Geosciences. 2017. Vol. 10. Iss. 18. N 409. DOI: 10.1007/s12517-017-3189-4
  15. Shams S., Monjezi M., Majd V.J., Armaghani D.J. Application of fuzzy inference system for prediction of rock fragmentation induced by blasting. Arabian Journal of Geosciences. 2015. Vol. 8. Iss. 12, p. 10819-10832. DOI: 10.1007/s12517-015-1952-y
  16. Asl P.F., Monjezi M., Hamidi J.K., Armaghani D.J. Optimization of flyrock and rock fragmentation in the Tajareh limestone mine using metaheuristics method of firefly algorithm. Engineering with Computers. 2018. Vol. 34, p. 241-251. DOI: 10.1007/s00366-017-0535-9
  17. Dimitraki L., Christaras B., Marinos V. et al. Predicting the average size of blasted rocks in aggregate quarries using artificial neural networks. Bulletin of Engineering Geology and the Environment. 2019. Vol. 78. Iss. 4, p. 2717-2729. DOI: 10.1007/s10064-018-1270-1
  18. Ebrahimi E., Monjezi M., Khalesi M.R., Armaghani D.J. Prediction and optimization of back-break and rock fragmentation using an artificial neural network and a bee colony algorithm. Bulletin of Engineering Geology and the Environment. 2016. Vol. 75. Iss. 1, p. 27-36. DOI: 10.1007/s10064-015-0720-2
  19. Hasanipanah M., Armaghani D.J., Monjezi M., Shams S. Risk assessment and prediction of rock fragmentation produced by blasting operation: a rock engineering system. Environmental Earth Sciences. 2016. Vol. 75. Iss. 9. N 808. DOI: 10.1007/s12665-016-5503-y
  20. Jian Zhou, Chuanqi Li, Arslan C.A. et al. Performance evaluation of hybrid FFA-ANFIS and GA-ANFIS models to predict particle size distribution of a muck-pile after blasting. Engineering with Computers. 2021. Vol. 37. Iss. 1, p. 265-274. DOI: 10.1007/s00366-019-00822-0
  21. Wei Gao, Karbasi M., Hasanipanah M. et al. Developing GPR model for forecasting the rock fragmentation in surface mines. Engineering with Computers. 2018. Vol. 34. Iss. 2, p. 339-345. DOI: 10.1007/s00366-017-0544-8
  22. Amoako R., Jha A., Shuo Zhong. Rock Fragmentation Prediction Using an Artificial Neural Network and Support Vector Regression Hybrid Approach. Mining. 2022. Vol. 2. Iss. 2, p. 233-247. DOI: 10.3390/mining2020013
  23. Tiile R.N. Artificial neural network approach to predict blast-induced ground vibration, airblast and rock fragmentation: A Thesis Presented to the Faculty of the Graduate School of the Missouri University of Science and Technology in Partial Fulfillment of the Requirements for the Degree Master of Science in Mining Engineering. Missouri, 2016. N 7571, p. 99.
  24. Yari M., He B., Armaghani D.J. et al. A novel ensemble machine learning model to predict mine blasting–induced rock fragmentation. Bulletin of Engineering Geology and the Environment. 2023. Vol. 82. Iss. 5. N 187. DOI: 10.1007/s10064-023-03138-y
  25. Koopialipoor M., Armaghani D.J., Haghighi M., Ghaleini E.N. A neuro-genetic predictive model to approximate overbreak induced by drilling and blasting operation in tunnels. Bulletin of Engineering Geology and the Environment. 2019. Vol. 78. Iss. 2, p. 981-990. DOI: 10.1007/s10064-017-1116-2
  26. Hosseini S., Poormirzaee R., Hajihassani M. An uncertainty hybrid model for risk assessment and prediction of blast-induced rock mass fragmentation. International Journal of Rock Mechanics and Mining Sciences. 2022. Vol. 160. N 105250. DOI: 10.1016/j.ijrmms.2022.105250
  27. Hosseini S., Mousavi A., Monjezi M., Khandelwal M. Mine-to-crusher policy: Planning of mine blasting patterns for environmentally friendly and optimum fragmentation using Monte Carlo simulation-based multi-objective grey wolf optimization approach. Resources Policy. 2022. Vol. 79. N 103087. DOI: 10.1016/j.resourpol.2022.103087
  28. Jelušič P., Ivanič A., Lubej S. Prediction of Blast-Induced Ground Vibration Using an Adaptive Network-Based Fuzzy Inference System. Applied Sciences. 2021. Vol. 11. Iss. 1. N 203. DOI: 10.3390/app11010203
  29. Mohamad E.T., Armaghani D.J., Hasanipanah M. et al. Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences. 2016. Vol. 75. Iss. 2. № 174. DOI: 10.1007/s12665-015-4983-5
  30. Yilmaz A., Poli R. Successfully and efficiently training deep multi-layer perceptrons with logistic activation function simply requires initializing the weights with an appropriate negative mean. Neural Networks. 2022. Vol. 153, p. 87-103. DOI: 10.1016/j.neunet.2022.05.030
  31. Chen Z., Zhu L., Lu H. et al. Research on bearing fault diagnosis based on improved genetic algorithm and BP neural network. Scientific Reports. 2024. Vol. 14. N 15527. DOI: 10.1038/s41598-024-66318-0
  32. Temeng V.A., Ziggah Y.Y., Arthur C.K. A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network. International Journal of Mining Science and Technology. 2020. Vol. 30. Iss. 5, p. 683-689. DOI: 10.1016/j.ijmst.2020.05.020
  33. Pizarroso J., Portela J., Muñoz A. NeuralSens: Sensitivity Analysis of Neural Networks. Journal of Statistical Software. 2022. Vol. 102. Iss. 7, p. 36. DOI: 10.18637/jss.v102.i07
  34. Armaghani D.J., Hasanipanah M., Mahdiyar A. et al. Airblast prediction through a hybrid genetic algorithm-ANN model. Neural Computing and Applications. 2018. Vol. 29. Iss. 9, p. 619-629. DOI: 10.1007/s00521-016-2598-8
  35. Hosseini M., Khandelwal M., Lotfi R., Eslahi M. Sensitivity analysis on blast design parameters to improve bench blasting outcomes using the Taguchi method. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2023. Vol. 9. Iss. 1. N 9. DOI: 10.1007/s40948-023-00540-4
  36. Mboyo H.L., Bingjie Huo, Mulenga F. K. et al. Assessing the Impact of Surface Blast Design Parameters on the Performance of a Comminution Circuit Processing a Copper-Bearing Ore. Minerals. 2024. Vol. 14. Iss. 12. N 1226. DOI: 10.3390/min14121226
  37. Singh P.K., Roy M.P., Paswan R.K. et al. Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering. 2016. Vol. 8. Iss. 2, p. 225-237. DOI: 10.1016/j.jrmge.2015.10.005
  38. Lundberg S.M., Su-In Lee. A Unified Approach to Interpreting Model Predictions. 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, December, 2017, p. 10. DOI: 10.48550/arXiv.1705.07874

Similar articles

Alternative frameworks for equipment positioning in mining operations
2025 Mikhail S. Nikitenko, Danila Yu. Khudonogov, Sergei A. Kizilov
The model of wireless charging infrastructure for electric transport of open-pit mining enterprises
2025 Irina Yu. Semykina, Valery M. Zavyalov, Yaroslava A. Nechiporenko, Elena N. Taran
New approaches to mineral quality variability evaluation using big data for operational control of ore flows in mining operations
2025 Egor A. Knyazkin, Dmitrii A. Klebanov, Roman O. Yuvakaev
Scientific and methodological approaches in implementing the MGIS import substitution project at PJSC ALROSA
2025 Sergei V. Lukichev, Oleg V. Nagovitsyn
Development and integration of an underground mining enterprise ventilation process simulations into the demand response
2025 Aleksandr V. Nikolaev, Aleksei V. Kychkin
Application of machine learning to modeling Herschel – Bulkley drilling fluid parameters for optimizing wellbore cleaning
2025 Vasiliy I. Nikitin, Mikhail V. Dvoynikov, Kirill S. Kupavykh, Tatiana A. Panteleeva