Подать статью
Стать рецензентом
Том 230
Страницы:
139
Скачать том:

Особенности возникновения и роста нанодисперсных интерметаллидных упрочняющих включений в быстроохлажденных сплавах системы Al–Mg–Zr–X

Авторы:
Д. И. Буделовский1
С. Ю. Петрович2
В. А. Липин3
Об авторах
  • 1 — ООО «Вириал»
  • 2 — Санкт-Петербургский политехнический университет Петра Великого
  • 3 — Высшая школа технологии и энергетики Санкт-Петербургского государственного университета промышленных технологий и дизайна
Дата отправки:
2017-10-31
Дата принятия:
2018-01-01
Дата публикации:
2018-04-25

Аннотация

Изучалось влияние четвертого элемента на микроструктуру быстроохлажденных сплавов системы Al–Mg–Zr. Сплавы дополнительно легировали тугоплавкими металлами Ti, Hf, W, Nb. В структуре всех образцов в непосредственной близости к охлаждаемой поверхности обнаружены равномерно распределенные интерметаллидные включения размером несколько нанометров. Подобная структура может быть представлена как дисперсно-упрочненный композиционный материал. Для количественного описания структуры полученных частиц охлажденного расплава был проведен количественный металлографический анализ. Полученные быстроохлажденные сплавы могут быть описаны как дисперсионно-упрочненные композиционные материалы, в которых матрица – алюминиево-магниевый сплав, а упрочнитель – интерметаллидные частицы. В зависимости от легирующего компонента эти частицы различаются формой (сферы, пластины, агломераты) и размером (от 200 нм при легировании Hf и W до 1,2-1,5 мкм при легировании Ti и Nb). Рентгенофазовым анализом (РФА) установлено, что в изучаемых сплавах системы Al–5Mg–1,2Zr–(0,5÷2,0)X высокие скорости охлаждения расплавов приводят к образованию новых интерметаллидов, отсутствующих в равновесных системах. На примере сплава с гафнием показано, что увеличение содержания легирующего компонента (от 0,5 до 2 % по массе) приводит к увеличению объемной доли интерметаллидных включений (от 5 до 12,8 %). При этом их форма и средний размер остаются неизменными. Дополнительный легирующий компонент позволит улучшить механические характеристики алюминиевых сплавов за счет увеличения порога рекристаллизации быстроохлажденного сплава.

10.25515/pmi.2018.2.139
Перейти к тому 230

Литература

  1. Беляев А.И. Металловедение алюминия и его сплавов: Справочник / А.И.Беляев, О.С.Бочвар, Н.Н.Буйнов. М.: Металлургия, 1983. 280 с.
  2. Глезер А.М. Аморфно-нанокристаллические сплавы / А.М.Глезер, Н.А.Шурыгина. М.: Физматлит, 2013. 450 с.
  3. Добаткин В.И. Гранулируемые алюминиевые сплавы / В.И.Добаткин, В.И.Елагин. М.: Металлургия, 1981. 176 с.
  4. Казакевич Г.С. Металлические композиционные материалы / Ленинградский политехнический институт. Л., 1989. 64 с.
  5. Колачев Б.А. Металловедение и термическая обработка цветных металлов и сплавов / Б.А.Колачев, В.И.Елагин, В.А.Ливанов / МИСИС. М., 1999. 416 с.
  6. Металлические порошки алюминия, магния, титана и кремния. Потребительские свойства и области применения / В.Г.Гопиенко, С.Ю.Петрович, В.П.Черепанов, И.Б.Грищенко, В.А.Баранов / Под ред. А.И.Рудского. СПб: Изд-во Политехн. ун-та, 2012. 356 с.
  7. Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов / Под ред. Ф.И.Квасова, Г.Б.Строганова, И.Н.Фридляндера. М.: Металлургия, 1979. 640 с.
  8. Особенности микроструктуры быстроохлажденных чешуек из сплавов системы Al–Mg–Zr–X / Д.И.Буделовский, С.Ю.Петрович, В.А.Липин, И.К.Боричева, В.Д.Андреева, А.Л.Шахмин // Технология легких сплавов. 2016. № 3. С. 53-57.
  9. Полмеар Я. Легкие сплавы: от традиционных до нанокристаллов. М.: Техносфера, 2008. 463 с.
  10. Попова М.В. Прогрессивные способы повышения свойств алюминиевых сплавов / М.В.Попова, Н.В.Кибко; Сибирский государственный индустриальный университет. Новокузнецк, 2012. 153 с.
  11. Растровая электронная микроскопия и рентгеновский микроанализ / Дж.Гоулдстейн, Д.Ньюбери, П.Эчлин, Д.Джой, Ч.Фиори, Ф.Лифшин. М.: Мир, 1984. 303 с.
  12. Судзуки К. Аморфные металлы / К.Судзуки, Х.Фудзимори, К.Хасимото. М.: Металлургия, 1987. 328 с.

Похожие статьи

Теоретические аспекты оценки технического уровня электротехнических комплексов
2018 С. В. Колесниченко, О. В. Афанасьева
Объемное и поверхностное распределение радиационных дефектов в природных алмазах
2018 Е. А. Васильев, А. В. Козлов, В. А. Петровский
Основные направления повышения эффективности хозяйственной деятельности в Арктической зоне Российской Федерации
2018 С. А. Агарков, А. В. Козлов, С. В. Федосеев, А. Б. Тесля
Условия прохождения диффузионного превращения аустенита в стали Cr–3Ni–Mo–V-композиции с высокой устойчивостью аустенита
2018 В. В. Цуканов, Н. В. Лебедева, Ю. М. Маркова
Оценка связи прочности и скорости ультразвука в стеклопластике
2018 А. И. Потапов
Метод индукционного контроля массовой доли железа в магнетитовой руде
2018 И. Н. Баженов, О. О. Басов