Submit an Article
Become a reviewer
Vol 230
Pages:
139
Download volume:
RUS ENG

Peculiarities of formation and growth of nanodispersed intermetallic strengthening inclusions in rapidly-solidified alloys of Al–Mg–Zr–X-system

Authors:
D. I. Budelovskii1
S. Yu. Petrovich2
V. A. Lipin3
About authors
  • 1 — OJSC «Virial»
  • 2 — Peter the Great Saint-Petersburg Polytechnic University
  • 3 — Higher School of Technology and Energy of Saint Petersburg State University of Industrial Technologies and Design
Date submitted:
2017-10-31
Date accepted:
2018-01-01
Date published:
2018-04-25

Abstract

The paper is devoted to the influence of the fourth element on the microstructure of the rapidly-solidified alloys of the Al–Mg–Zr-system. Alloys were additionally doped with high-melting-point metals Ti, Hf, W, and Nb. In the structure of all samples in the immediate area of the cooled surface, uniformly distributed intermetallic inclusions of several nanometers in size were detected. Such a structure can be represented as a dispersion-strengthened composite. A quantitative metallographic analysis was carried out to quantitatively describe the structure of the obtained particles of the cooled melt. The obtained rapidly-solidified alloys can be described as dispersion-strengthened composite materials with the aluminum-magnesium alloy matrix and the intermetallic particles strengthener. Depending on the alloying component, these particles differ in shape (spheres, plates, agglomerates) and in size (from 200 nm when alloying with Hf and W up to 1.2-1.5 μm with Ti and Nb alloying). The X-ray phase analysis (XPA) showed that in the studied alloys of the Al–5Mg–1.2Zr–(0.5÷2.0)X-system, high cooling rates of melts lead to the formation of new intermetallic compounds that are absent in equilibrium systems. The example of an alloy with hafnium additive shows that an increase in the content of the alloying component (from 0.5 to 2 % by mass) leads to an increase in the volume ratio of intermetallic inclusions (from 5 to 12.8 %). At the same time, their shape and average size remain unchanged. The additional alloying component will improve the mechanical characteristics of aluminum alloys by increasing the recrystallization threshold of a rapidly-solidified alloy.

10.25515/pmi.2018.2.139
Go to volume 230

References

  1. Беляев А.И. Металловедение алюминия и его сплавов: Справочник / А.И.Беляев, О.С.Бочвар, Н.Н.Буйнов. М.: Металлургия, 1983. 280 с.
  2. Глезер А.М. Аморфно-нанокристаллические сплавы / А.М.Глезер, Н.А.Шурыгина. М.: Физматлит, 2013. 450 с.
  3. Добаткин В.И. Гранулируемые алюминиевые сплавы / В.И.Добаткин, В.И.Елагин. М.: Металлургия, 1981. 176 с.
  4. Казакевич Г.С. Металлические композиционные материалы / Ленинградский политехнический институт. Л., 1989. 64 с.
  5. Колачев Б.А. Металловедение и термическая обработка цветных металлов и сплавов / Б.А.Колачев, В.И.Елагин, В.А.Ливанов / МИСИС. М., 1999. 416 с.
  6. Металлические порошки алюминия, магния, титана и кремния. Потребительские свойства и области применения / В.Г.Гопиенко, С.Ю.Петрович, В.П.Черепанов, И.Б.Грищенко, В.А.Баранов / Под ред. А.И.Рудского. СПб: Изд-во Политехн. ун-та, 2012. 356 с.
  7. Мондольфо Л.Ф. Структура и свойства алюминиевых сплавов / Под ред. Ф.И.Квасова, Г.Б.Строганова, И.Н.Фридляндера. М.: Металлургия, 1979. 640 с.
  8. Особенности микроструктуры быстроохлажденных чешуек из сплавов системы Al–Mg–Zr–X / Д.И.Буделовский, С.Ю.Петрович, В.А.Липин, И.К.Боричева, В.Д.Андреева, А.Л.Шахмин // Технология легких сплавов. 2016. № 3. С. 53-57.
  9. Полмеар Я. Легкие сплавы: от традиционных до нанокристаллов. М.: Техносфера, 2008. 463 с.
  10. Попова М.В. Прогрессивные способы повышения свойств алюминиевых сплавов / М.В.Попова, Н.В.Кибко; Сибирский государственный индустриальный университет. Новокузнецк, 2012. 153 с.
  11. Растровая электронная микроскопия и рентгеновский микроанализ / Дж.Гоулдстейн, Д.Ньюбери, П.Эчлин, Д.Джой, Ч.Фиори, Ф.Лифшин. М.: Мир, 1984. 303 с.
  12. Судзуки К. Аморфные металлы / К.Судзуки, Х.Фудзимори, К.Хасимото. М.: Металлургия, 1987. 328 с.

Similar articles

Chemical weathering of lower paleozoic black shales of south Sweden
2018 D. O. Voronin, E. G. Panova
Method of induction control of iron weight fraction in magnetite ore
2018 I. N. Bazhenov, O. O. Basov
Estimation of the relation of strength and ultrasound speed in glass-reinforce plastic
2018 A. I. Potapov
Conditions of austenite diffusional transformation in steel of Cr–3Ni–Mo–V-composition with high austenite stability
2018 V. V. Tsukanov, N. V. Lebedeva, Yu. M. Markova
Risk assessment of accidents due to natural factors at the Pascuales – Cuenca multiple-use pipeline (Ecuador)
2018 Dzh. Zambrano, S. V. Kovshov, E. A. Lyubin
Analyis of government support tools for mining companies in the Russian Arctic zone
2018 S. A. Lipina, L. K. Bocharova, L. A. Belyaevskaya-Plotnik