Over the past decade, there has been a steady growth in demand for rare metals, with rhenium being one of the most highly demanded, but also one of the most expensive and difficult to obtain. The high demand for rhenium is due to its use as a key component of metallurgical alloys or as a component of catalysts used in the oil refining industry. The aggregate of facts causes profitability of processing of the rhenium-containing mineral resources, which also are the copper substandard concentrates obtained at processing of the Zhezkazgan sandstones. The study focuses on the processes of extraction of copper and sorption recovery of rhenium from solutions of ammonia leaching of copper substandard concentrates. Model solutions similar in the elemental composition to solutions of ammonia leaching solutions of copper substandard concentrates obtained during the processing of Zhezkazgan sandstones were used as an object of the study. The paper estimates extraction characteristics of copper recovery using LIX 84-I solution in kerosene, as well as sorption characteristics of the rhenium recovery process using the Purolite PPA100 anion exchanger. Based on the obtained characteristics the possibility of hydrometallurgical processing of ammonia leaching solutions of substandard copper-sulfide concentrates, and recovery of the obtained commercial products is shown.
Experimental data on solvent extraction of lanthanum (III) and samarium (III) by solutions of naphthenic acid from nitrate medium was obtained. Dependences of distribution coefficient of pH, concentration of organic and aqueous phase was obtained. thermodynamic characteristics of extraction equilibrium was calculated.
Experimental data on solvent extraction of lanthanum (III) and samarium (III) by solutions of naphthenic acid from nitrate medium was obtained. Dependences of distribution coefficient of pH, concentration of organic and aqueous phase was obtained. thermodynamic characteristics of extraction equilibrium was calculated.
Technology of solvent extraction and separation of cerium lanthanides by solutions of naphthenic acid in o-dimethylbenzene was obtained. The sequence of extraction Eu > Sm > Ce > La from nitrate media was calculated.
Experimental data on solvent extraction of lanthanum (III) by solutions of oleic acid from nitrate medium was obtained: process direction, dependences of distribution coefficient of pH, concentration of organic and aqueous phase, thermodynamically characteristics of extraction equilibrium.
Experimental data on solvent extraction of cerium (III), yttrium (III), lanthanum (III) by solutions of oleinic acid in o-dimethylbenzene was obtained. The possibility of extraction sepa- ration of cerium(III), yttrium(III), lanthanum (III) from nitrate media was shown.
Experimental data on solvent extraction of cerium (III) by solutions of oleinic acids in odimethylbenzene was obtained. After mathematical analysis of the dependences of the distribution coefficient from pH and composition of organic and aqueous phases was determined the structure and composition of solvate complexes and value of the Gibbs free energies and reaction equilibrium constant.
Experimental data on the solvate extraction of cerium(III) and yttrium(III) by solutions of oleic and naphthenic acids in o-dimethylbenzene were obtained. After mathematical analysis of the dependences of the distribution coefficient on pH and the composition of the organic and aqueous phases, the structure and composition of the solvate complexes were determined, as well as the values of Gibbs free energies and equilibrium constants of the reaction.
Data on the extraction of cerium(III) and yttrium(III) by naphthenic acid solution in o-xylene from chloride media were obtained. The experiment showed W-shaped dependence of the distribution coefficient of cerium(III) and yttrium(III) on the Cl content in the equilibrium aqueous phase. The minima of the dependence are explained by the formation of non-extractable complexes MeCl 2 +and MeOH 2 +, the maxima - by the increase in the degree of dissociation of naphthenic acid and the increase in the ionic strength of the solution.