Submit an Article
Become a reviewer

Search articles for by keywords:
viscosity

Energy industry
  • Date submitted
    2023-03-16
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator

Article preview

In the steady state of operation, the temperature of a mining excavator hydraulic fluid is determined by the ambient temperature, hydraulic system design, and power losses. The amount of the hydraulic system power loss depends on the hydraulic fluid physical and thermodynamic properties and the degree of wear of the mining excavator hydraulic system working elements. The main causes of power losses are pressure losses in pipelines, valves and fittings, and leaks in pumps and hydraulic motors. With an increase in the temperature of hydraulic fluid, its viscosity decreases, which leads, on the one hand, to a decrease in power losses due to pressure losses in pipelines, valves and fittings, and, on the other hand, to an increase in volumetric leaks and associated power losses. To numerically determine the level of power losses occurring in the hydraulic system on an example of the Komatsu PC750-7 mining excavator when using Shell Tellus S2 V 22, 32, 46, 68 hydraulic oils with the corresponding kinematic viscosity of 22, 32, 46, 68 cSt at 40 °C, the developed calculation technique and software algorithm in the MatLab Simulink environment was used. The power loss coefficient, obtained by comparing power losses at the optimum temperature for a given hydraulic system in the conditions under consideration with the actual ones is proposed. The use of the coefficient will make it possible to reasonably select hydraulic fluids and set the values of the main pumps limit state and other hydraulic system elements, and evaluate the actual energy efficiency of the mining hydraulic excavator. Calculations have shown that the implementation of measures that ensure operation in the interval with a deviation of 10 % from the optimal temperature value for these conditions makes it possible to reduce energy losses from 3 to 12 %.

How to cite: Rakhutin M.G., Giang K.Q., Krivenko A.E., Tran V.H. Evaluation of the influence of the hydraulic fluid temperature on power loss of the mining hydraulic excavator // Journal of Mining Institute. 2023. Vol. 261. p. 374-383. EDN OKWKUF
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-09-27
  • Date accepted
    2023-04-03
  • Date published
    2023-12-25

The study of displacing ability of lignosulfonate aqueous solutions on sand packed tubes

Article preview

This paper presents the findings of laboratory studies of rheological properties and oil displacing ability of aqueous solutions of technical grade lignosulfonate done on the sand packed tube models. The solutions containing lignosulfonate can be useful as displacement agents in development of watered reservoirs with heterogeneous porosity and permeability. When used at high concentrations, technical grade lignosulfonate can achieve selective shut-off while maintaining the reservoir pressure. The oil displacement efficiency is improved by means of redistributing the flows and selective isolation of high-permeability zones. The use of such compositions allows increasing the sweep of low-permeability reservoir zones by created pressure differential and displacing the residual oil.

How to cite: Dorfman M.B., Sentemov A.А., Belozerov I.P. The study of displacing ability of lignosulfonate aqueous solutions on sand packed tubes // Journal of Mining Institute. 2023. Vol. 264. p. 865-873. EDN DZDUVM
Modern Trends in Hydrocarbon Resources Development
  • Date submitted
    2021-09-17
  • Date accepted
    2022-04-07
  • Date published
    2022-12-29

Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover

Article preview

Technique for automated calculation of technological parameters for non-Newtonian liquids injection into a well during workover is presented. At the first stage the algorithm processes initial flow or viscosity curve in order to determine rheological parameters and coefficients included in equations of rheological models of non-Newtonian fluids. At the second stage, based on data from the previous stage, the program calculates well design and pump operation modes, permissible values of liquid flow rate and viscosity, to prevent possible hydraulic fracturing. Based on the results of calculations and dependencies, a decision is made on the necessity of changing the technological parameters of non-Newtonian liquid injection and/or its composition (components content, chemical base) in order to prevent the violation of the technological operation, such as unintentional formation of fractures due to hydraulic fracturing. Fracturing can lead to catastrophic absorptions and, consequently, to increased consumption of technological liquids pumped into the well during workover. Furthermore, there is an increased risk of uncontrolled gas breakthrough through highly conductive channels.

How to cite: Mardashov D.V., Bondarenko А.V., Raupov I.R. Technique for calculating technological parameters of non-Newtonian liquids injection into oil well during workover // Journal of Mining Institute. 2022. Vol. 258. p. 881-894. DOI: 10.31897/PMI.2022.16
Oil and gas
  • Date submitted
    2021-02-28
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation

Article preview

One of the development priorities in oil and gas industry is to maintain gas and oil pipeline networks and develop pipeline-connected gas and oil fields of the Arctic zone of the Russian Federation, a promising region the resource potential of which will not only meet a significant portion of internal and external demand for various types of raw materials and primary energy carriers, but will also bring great economic benefits to subsoil users and the state. The mineral and raw material centers of the Nadym-Purskiy and Pur-Tazovskskiy oil and gas bearing areas are among the most attractive regions of the Arctic zone. It is necessary to develop a scientifically substantiated approach to improve the methods of oil transportation from the field to the existing pipelines. As it is known, the task of increasing the efficiency of pipeline transportation of high-viscosity oil is inseparably connected with solving problems in the field of thermal and hydraulic calculation of pipeline system. The article presents the substantiation of dependencies for hydraulic calculation of pipelines transporting high-viscosity oil exhibiting complex rheological properties. Based on the laws of hydraulics for non-Newtonian fluids, the formulas for calculating head losses for fluids obeying Ostwald's law are proposed, their relationship to the classical equations of hydraulics is shown. The theoretical substantiation of looping installation for increasing the efficiency of pipeline transportation of high-viscosity oil taking into account the received dependences for power fluid is considered.

How to cite: Nikolaev A.K., Zaripova N.А. Substantiation of analytical dependences for hydraulic calculation of high-viscosity oil transportation // Journal of Mining Institute. 2021. Vol. 252. p. 885-895. DOI: 10.31897/PMI.2021.6.10
Oil and gas
  • Date submitted
    2019-11-28
  • Date accepted
    2020-05-08
  • Date published
    2020-10-08

Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid

Article preview

Article presents investigations on the development of a drilling mud composition for directional wells in an oil field located in the Republic of Tatarstan (Russia). Various rheological models of fluid flow and their applicability for drilling muds are analyzed. Laboratory experiments to measure the main rheological parameters of a solution, such as plastic viscosity, dynamic shear stress, as well as indicators of non-linearity and consistency are presented. On the basis of laboratory investigations, it was concluded that high molecular weight polymer reagents (for example, xanthan gum) can give tangible pseudoplastic properties to the washing fluid, and their combination with a linear high molecular weight polymer (for example, polyacrylamide) reduces the value of dynamic shear stress. Thus, when selecting polymer reagents for treating drilling muds at directional drilling, it is necessary to take into account their structure, molecular weight and properties. Combination of different types of reagents in the composition of the drilling mud can lead to a synergistic effect and increase the efficiency of the drilling process as a whole.

How to cite: Ulyasheva N.M., Leusheva E.L., Galishin R.N. Development of the drilling mud composition for directional wellbore drilling considering rheological parameters of the fluid // Journal of Mining Institute. 2020. Vol. 244. p. 454-461. DOI: 10.31897/PMI.2020.4.8
Oil and gas
  • Date submitted
    2017-12-29
  • Date accepted
    2018-03-26
  • Date published
    2018-06-22

Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit

Article preview

Yarega oil and titanium deposit is a unique facility due to a combination of two mineral resources – oil and titanium ore – in one geologic structure. The paper describes mining and geologic conditions of the field, as well as engineering solutions to enhance oil recovery and the efficiency of heat transfer. The author focuses on the issues of deposit opening and preparation for development, and provides recommendations regarding the exploitation procedure of the oil and titanium parts of the field, which take into account field data on the extraction rates of high viscosity oil and titanium ore from the start of deposit development. The paper contains analysis of existing technological schemes of high viscosity oil extraction and steam heating of the oil bed, as well as assessment of their feasibility. Issues of field preparation for development are reviewed from the position of accumulated practical experience, and recommendations on the feasibility of combined underground and open-pit mining are supported with evidence. The main advantages of the proposed system are explained; key technical and economic indicators are calculated.

How to cite: Dolgii I.E. Methods to enhance oil recovery in the process of complex field development of the Yarega oil and titanium deposit // Journal of Mining Institute. 2018. Vol. 231. p. 263-267. DOI: 10.25515/PMI.2018.3.263
Oil and gas
  • Date submitted
    2015-07-14
  • Date accepted
    2015-09-28
  • Date published
    2016-02-24

Selection of rational heating temperature for pipeline pumping high-viscosity and high pour point crude oil

Article preview

The article deals with the transportation problems of high-viscosity and high pour point crude oil through pipelines. The possibility of a structural oil movement mode development during transportation below the pour point is analyzed. The results of the experiment for unevenness of the heat flux identification in the underground pipeline are given.

How to cite: Nikolaev A.K., Klimko V.I. Selection of rational heating temperature for pipeline pumping high-viscosity and high pour point crude oil // Journal of Mining Institute. 2016. Vol. 217. p. 50-54.
Development of oil and gas deposits
  • Date submitted
    2010-07-16
  • Date accepted
    2010-09-11
  • Date published
    2011-03-21

Parameters of high viscosity oils transportation in the form of emulsion research in order to its optimization

Article preview

The article deals with the physical model of high viscosity oil-in-water emulsion flow, which concern both structural and plastic properties of viscoplastic liquids. On the basis of theoretical study, which was proved with experimental data, computation algorithm of high viscosity oil in emulsion state pipeline transportation was developed.

How to cite: Aleksandrov V.I., Khrabrov A.P. Parameters of high viscosity oils transportation in the form of emulsion research in order to its optimization // Journal of Mining Institute. 2011. Vol. 189. p. 175-178.
Applied and fundamental research in physics and mathematics
  • Date submitted
    2009-09-01
  • Date accepted
    2009-11-19
  • Date published
    2010-06-25

Structural features of gas-liquid mixture

Article preview

the effectiveness of the foam flush drilling connects of foam ability to reduce the friction force and drilling shaft oscillation. The main factors are foam viscosity and foam bubble’s diameter.

How to cite: Muraev Y.D., Shkryabin V.L., Guseinov S.Z. Structural features of gas-liquid mixture // Journal of Mining Institute. 2010. Vol. 187. p. 79-82.