Submit an Article
Become a reviewer

Search articles for by keywords:
neutron-neutron logging

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-08-01
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field

Article preview

Permo-Carboniferous oil deposit of the Usinskoye field is characterized by an extremely complex type of the void space with intense cross-sectional distribution of cavernous and fractured rock. In this study, for this production site, the process of 3D geological modeling has been implemented. At the first stage, it provided for automated identification of reservoir volumes by comparing the data of core and well logging surveys; at the second stage, identification of rock lithotypes according to Dunham classification is performed on the basis of comparison of thin sections examination and well logging data. A large array of factual information enables the use of machine learning technology on the basis of Levenberg – Marquardt neural network apparatus toward achievement of our research goals. The prediction algorithms of reservoir and rock lithotype identification using well logging methods obtained on the basis of the training samples are applied to the wells without core sampling. The implemented approach enabled complementing the 3D geological model with information about rock permeability and porosity, taking into account the structural features of the identified lithotypes. For the Permo-Carboniferous oil deposit of the Usinskoye field, the volumetric zoning of the distribution of different rock lithotypes has been established. Taking into account the lithotypes identified based on machine learning algorithms, density and openness of fractures were determined, and fracture permeability in the deposit volume was calculated. In general, during the implementation, the machine learning errors remained within 3-5 %, which suggests reliability of the obtained predictive solutions. The results of the research are incorporated in the existing 3D digital geological and process model of the deposit under study.

How to cite: Potekhin D.V., Galkin S.V. Use of machine learning technology to model the distribution of lithotypes in the Permo-Carboniferous oil deposit of the Usinskoye field // Journal of Mining Institute. 2023. Vol. 259 . p. 41-51. DOI: 10.31897/PMI.2022.101
Oil and gas
  • Date submitted
    2021-09-22
  • Date accepted
    2021-11-30
  • Date published
    2021-12-27

Possibilities for creating Russian high-tech bottomhole assembly

Article preview

Development of high-tech well electronic measuring systems is aimed at creating modern equipment: telemetry, well geophysical measurement equipment, the architecture of which is divided into basic (with measurement channels for gamma logging and inductive resistance) and advanced (with radioactive, acoustic, magnetic resonance and thermobarometric measurement channels, including azimuthal methods of investigation). Over-the-bit measurement modules, rotary steerable systems are being developed and channels for transmitting data to the surface are being improved. Vice versa, specialized surface equipment with highly integrated software is being created. Different measurement modules are manufactured by different companies, which creates uncertainties in the possibility of interfacing the manufacturers' measurement modules into a single well measurement system. The article presents an analysis of the readiness of Russian oil service companies to produce well and surface equipment for drilling Russian directional oil and gas wells, meeting modern requirements for accuracy, lifetime and operating conditions. The possibility of creating a fully Russian well high-tech equipment and the required resources, risks and measures to mitigate them when creating a modern well measurement system are considered.

How to cite: Zhdaneev O.V., Zaytsev А.V., Prodan Т.T. Possibilities for creating Russian high-tech bottomhole assembly // Journal of Mining Institute. 2021. Vol. 252 . p. 872-884. DOI: 10.31897/PMI.2021.6.9
Geology
  • Date submitted
    2021-03-16
  • Date accepted
    2021-07-27
  • Date published
    2021-10-21

Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration

Article preview

Advancement in the production of potassium fertilizers is an important strategic task of Russian agricultural industry. Given annually growing production rates, the reserves of discovered potassium-magnesium salt deposits are noticeably decreasing, which creates the need to ensure stable replenishment of the resource base through both the discovery of new deposits and the exploitation of deep-lying production horizons of the deposits that are already under development. In most cases, deposits of potassium-magnesium salts are developed by underground mining. The main problem for any salt deposit is water. Dry salt workings do not require any additional reinforcement and can easily withstand rock pressure, but with an inflow of water they begin to collapse intensively – hence, special attention is paid to mine waterproofing. Determination of spatial location, physical and mechanical properties of the aquifer and water-blocking stratum in the geological section represent an important stage in the exploration of a salt deposit. The results of these studies allow to validate an optimal system of deposit development that will minimize environmental and economic risks. On the territory of Russia, there is a deposit of potassium-magnesium salts with a unique geological structure – its production horizon lies at a considerable depth and is capped by a regional aquifer, which imposes significant limitations on the development process. To estimate parameters of the studied object, we analyzed the data from CDP seismic reflection survey and a suite of methods of radioactive and acoustic well logging, supplemented with high-frequency induction logging isoparametric sounding (VIKIZ) data. As a result of performed analysis, we identified location of the water-bearing stratum, estimated average thickness of the aquifers and possible water-blocking strata. Based on research results, we proposed methods for increasing operational reliability of the main shaft in the designed mine that will minimize the risks of water breakthrough into the mine shaft.

How to cite: Danileva N.A., Danilev S.M., Bolshakova N.V. Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration // Journal of Mining Institute. 2021. Vol. 250 . p. 501-511. DOI: 10.31897/PMI.2021.4.3