-
Date submitted2021-02-24
-
Date accepted2022-04-06
-
Date published2022-07-13
Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow
The reduction kinetics of serial phase transitions of iron oxides during reduction to a metallized state with different modes of technical hydrogen supply has been studied and substantiated. The results of the pellets formation when 3-5 % molasses is added to the red mud as a binding reagent are presented. The dependences of the reduction rate of iron oxides on the hydrogen flow rate are obtained. Based on the results of the experiments, a kinetic model was constructed, and with the help of X-ray phase and spectral analysis, it was proved that the agglomerates formed after heat treatment received high strength due to the adhesion of reduced iron particles with red mud particles. The use of a new type of charge materials in melting units will reduce the amount of emissions and dust fractions, as well as increase the metal yield.
-
Date submitted2018-12-28
-
Date accepted2019-03-24
-
Date published2019-06-25
Modern physicochemical equilibrium description in Na2O–Al2O3–H2O system and its analogues
Equilibrium and non-equilibrium states of systems Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O are crucial for establishing key technological parameters in alumina production and their optimization. Due to a noticeable discrepancy between experimental results and thermodynamic calculations based on materials of individual researchers the necessity of systematization and statistical processing of equilibrium data in these systems to create a reliable base of their physicochemical state, analysis and mathematical modeling of phase equilibria is substantiated. The tendency to a decrease of the hydration degree of solid sodium aluminates with increasing temperature and the transition of systems from the steady state of gibbsite to equilibrium with boehmite is revealed. The paper contains approximating functions that provide high-precision description of equilibrium isotherms in technologically significant area of Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O concentrations. Approximating function can be simplified by dividing the isotherm into two sections with the intervals of alkaline content 0-0.25 and 0.25-0.4 mole/100 g of solution. The differences in solubility isotherms for Na 2 O–Al 2 O 3 –H 2 O and K 2 O–Al 2 O 3 –H 2 O systems provide are associated with changes in the ionic composition solutions that depends on concentration and temperature, as well as differences connecting with alkali cation hydration, which is crucially important for thermodynamic modeling of equilibria under consideration.
-
Date submitted2018-01-15
-
Date accepted2018-02-28
-
Date published2018-06-22
About the role of hydrafed calcium carboaluminates in improving the technology of complex processing of nephelines
- Authors:
- V. M. Sizyakov
- V. N. Brichkin
The scientific justification and development of the method for industrial synthesis of complex aluminates of alkaline earth metals is an innovative solution that determined several directions in the development of technology for complex processing of nepheline raw materials. It ensures the production of high-quality metallurgical alumina, the effective utilization of nepheline sludge and production of new types of multipurpose by-products. The modern development of these technical solutions is associated with ensuring the energy efficiency of the synthesis of hydrafed calcium carboaluminates (HCCA) and increasing the level of purification of aluminate solutions. The conditions for synthesizing HCCA with the use of calcareous materials of natural and technogenic origin have been experimentally determined, which makes it possible to isolate the average particle diameter as one of the determining factors of this process. The effect of the turnover of the hydrogarnet sludge on the removal of kinetic limitations in the process of deep desalination of aluminous solutions is theoretically justified. The conditions of a two-stage dosage of HCCA are experimentally determined. It is shown that the optimum ratio of the amount of the reagent supplied in the first and second stages is about 3: 2. At the same time, the maximum degree of precipitation of silica provides the production of aluminate solutions with a silicon module at the level of 95,000, which is achieved by using a HCCA synthesized based on chemically precipitated calcium carbonate in the processing of wastes from the production of mineral fertilizers.
-
Date submitted2015-10-03
-
Date accepted2015-12-10
-
Date published2016-08-22
Directions and prospects of using low grade process fuel to produce alumina
- Authors:
- O. A. Dubovikov
- V. N. Brichkin
Power consumption across the globe is constantly increasing for a variety of reasons: growing population, industrialization and fast economic growth. The most widespread gaseous fuel – natural gas – has the low production cost. It is 2-3 times cheaper than liquid fuel production and 6-12 times cheaper than coal production. When natural gas is transported to distances from 1.5 to 2.5 thousand km by the pipeline, its cost with account of transportation is 1.5-2 times less than the cost of coal and the fuel storage facilities are not needed. Plants powered by natural gas have the higher efficiency as compared to the plants operating on other types of fuel. They are easier and cheaper to maintain and are relatively simple in automation, thus enhancing safety and improving the production process flow, do not require complicated fuel feeding or ash handling systems. Gas is combusted with a minimum amount of polluting emissions, which adds to better sanitary conditions and environment protection. But due to depletion of major energy resources many experts see the future of the global energy industry in opportunities associated with the use of solid energy carriers. From the environmental perspective solid fuel gasification is a preferred technology. The use of synthetic gas was first offered and then put to mass scale by English mechanical engineer William Murdoch. He discovered a possibility to use gas for illumination by destructive distillation of bituminous coal. After invention of the gas burner by Robert Bunsen, the illumination gas began to be used as a household fuel. The invention of an industrial gas generator by Siemens brothers made it possible to produce a cheaper generator gas which became a fuel for industrial furnaces. As the calorific value of generator gas produced through gasification is relatively low compared to natural gas, the Mining University studied possibilities to use different types of low grade process fuel at the Russian alumina refineries as an alternative to natural gas, access to which is restricted for some of the regions.
-
Date submitted2015-07-25
-
Date accepted2015-09-01
-
Date published2016-02-24
The phenomenon of isothermal transition of metastable aluminate solutions into the labile area and prospects of its industrial use
- Authors:
- V. N. Brichkin
- A. Kraslawski
The paper presents theoretically based requirements for the activation of synthetic gibbsite for maximum solubility of the activated product. The article describes the methodological foundations of gibbsite thermal activation and its effectiveness evaluation in terms of aluminate solutions decomposition. It is shown that to obtain high-saturation aluminate solutions, activation should provide generation of the reagent with highly-developed surface area, which is not identical to the structure of the deposited gibbsite. As a result of high-gradient thermal activation of synthetic gibbsite, it has been found that the targeted product develops predominantly an amorphous structure with a specific surface area up to 256 m2/ g, preserving its primary particle size. Activation products were investigated using modern methods of physical and chemical analysis. The experimental results confirmed the possibility of the activated product dissolution in the aluminate solution with a metastable compound and their spontaneous decomposition with aluminum hydroxide formation, characterized by high dispersion ability. It is shown, that a significant difference in kinetics and decomposition rates of solutions is connected with the use of a seed material with different particle size composition, which leads to the development of competing mechanisms, resulting in seed recrystallization, homogeneous and heterogeneous nucleation.
-
Date submitted2015-07-14
-
Date accepted2015-09-27
-
Date published2016-02-24
Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hydrochemical sinter processing
- Authors:
- V. M. Sizyakov
Complex mineral raw material, as alkali aluminum silicates, is an interest for aluminum industry, chemical industry and for the production of constructional materials. They are well represented in the earth's crust, characterized by the complexity of material composition and variable content of the main components such as alumina, silica and alkalies. They often occur where due to the geological conditions there is no bauxite, for instance, in the United States, Canada, Venezuela, Mexico, Iran, Egypt, Portugal, Spain, Bulgaria and other countries. At the present time for the Russian economy the nephelines from this list are the most valuable and have the great concern for the raw materials balance of the national aluminum industry. Because of limited reserves the bauxites proportion of alumina produced from nephelines by sintering is 40 % and in time this proportion will increase due to the involvement in the production of new deposits of alkali aluminum silicates. Many of foreign companies have also shown interest to the complex processing of ores. The investigation of technology is based on the method of sintering ore with limestone. As a result, the after-sintering mixture consists of alkali metal aluminates and dicalcium silicate; after-sintering mixture is leached by circulating alkaline aluminate solution, alumina, soda and potash are thrown out from the solution. Dicalcium silicate (nepheline sludge) is processed to Portland. For the investigated after-sintering mixture the tendency shows the increasing of optimum sintering temperature with the lowering Al 2 O 3 content. With the increasing of silicate module (SiO 2 / Al 3 O 3 ) of the initial alkali aluminum silicates charges the temperature of after-sintering mixture formation increases. After-sintering mixtures that are on base of alkali aluminum silicates have different microstructure and the degree of crystallization in which b-С 2 S and sodium aluminate is improved with a decrease of the aluminate phase amount. Results of investigations show a very limited solubility of aluminate phase in dicalcium silicate, which theoretically justifies a sufficiently high level of useful components chemical extraction in the processing of different types of alkali aluminum silicates by sintering.
-
Date submitted2009-08-10
-
Date accepted2009-10-21
-
Date published2010-02-01
Precipitation of alumina liquor inclusive potassium
- Authors:
- V. V. Radko
The materials of experimental research on alumina liquor precipitation kinetics in system Na 2 O – K 2 O – Al 2 O 3 – H 2 O using carbonated alumina hydroxide as a seed are presented. Particle size distribution (PSD) analyses of settling products are given. Correlation link of alumina liquor decomposition degree and average median diameter of received aluminum hydroxide are shown.