Submit an Article
Become a reviewer
Vol 217
Pages:
80
Download volume:
RUS

The phenomenon of isothermal transition of metastable aluminate solutions into the labile area and prospects of its industrial use

Authors:
V. N. Brichkin1
A. Kraslavski2
About authors
  • 1 — National Mineral Resources University (Mining University)
  • 2 — Lappeenranta University of Technology
Date submitted:
2015-07-25
Date accepted:
2015-09-01
Date published:
2016-01-01

Abstract

The paper presents theoretically based requirements for the activation of synthetic gibbsite for maximum solubility of the activated product. The article describes the methodological foundations of gibbsite thermal activation and its effectiveness evaluation in terms of aluminate solutions decomposition. It is shown that to obtain high-saturation aluminate solutions, activation should provide generation of the reagent with highly-developed surface area, which is not identical to the structure of the deposited gibbsite. As a result of high-gradient thermal activation of synthetic gibbsite, it has been found that the targeted product develops predominantly an amorphous structure with a specific surface area up to 256 m2/ g, preserving its primary particle size. Activation products were investigated using modern methods of physical and chemical analysis. The experimental results confirmed the possibility of the activated product dissolution in the aluminate solution with a metastable compound and their spontaneous decomposition with aluminum hydroxide formation, characterized by high dispersion ability. It is shown, that a significant difference in kinetics and decomposition rates of solutions is connected with the use of a seed material with different particle size composition, which leads to the development of competing mechanisms, resulting in seed recrystallization, homogeneous and heterogeneous nucleation.

Go to volume 217

References

  1. Абрамов В.Я. Физико-химические основы комплексной переработки алюминиевого сырья (щелочные спосо-бы) / В.Я.Абрамов, И.В.Николаев, Г.Д.Стельмакова. М.: Металлургия, 1985. 288 c.
  2. Бричкин В.Н. Количественное влияние затравки на показатели массовой кристаллизации химических осадков / В.Н.Бричкин, Д.А.Кремчеева, В.А.Матвеев // Записки Горного института. 2015. Т.211. С.64-70.
  3. Бричкин В.Н. Механизм и кинетика перекристаллизации гидроксида алюминия / В.Н.Бричкин, А.В.Цыбизов // Цветная металлургия. 2006. № 1. С.13-17.
  4. Влияние степени метастабильности растворов на кинетику массовой кристаллизации / В.Н.Бричкин, Н.А.Новиков, В.В.Радько, В.В.Васильев // Записки Горного института. 2011. Т.192. С.39-42.
  5. Зеликман А.И. Теория гидрометаллургических процессов / А.И.Зеликман, Г.М.Вольдман, Л.В.Беляевская. М.: Металлургия, 1983. 424 с.
  6. О направлениях стабилизации гранулометрического состава металлургического глинозема / В.Н.Бричкин, В.В.Васильев, Е.Е.Гордюшенков, Е.А.Алексеева // Записки Горного института. 2013. Т.202. С.88-91.
  7. Сизякова Е.В. Осаждение высокодисперсного гидроксида алюминия из растворов глиноземного производства / Е.В.Сизякова, В.Н.Бричкин, В.М.Сизяков // Научные основы химии и технологии переработки комплексного сырья и синтеза на его основе функциональных материалов. Апатиты: Изд-во Кольского научного центра РАН, 2008. Ч.1. С.168-171.
  8. Трейвус Е.Б. Кинетика роста и растворения кристаллов. Л.: Изд-во ЛГУ, 1979. 248 с.
  9. Хамский Е.В. Кристаллизация из растворов. Л.: Наука, 1967. 151 с.
  10. Louhi-Kultanen M. Case-based reasoning for crystallizer selection using rough sets and fuzzy sets analysis / M.Louhi-Kultanen, A.Kraslawski , Y.Avramenko // Chemical Engineering and Processing. 2009. Vol.48. P.1193-1198.
  11. Sizyakov V.M. Technological Factors of Carbonization of Aluminate Solutions / V.M.Siziakov, V.N.Brichkin // Non-ferrous metals. 2006. N 2. P.34-37.
  12. Sweegers C. Morphology, evolution and other characteristics of gibbsite crystals grown from pure and impure aqueous sodium aluminate solutions / C.Sweegers, H.C. de Coninck, H.Meekes, W.J.P. van Enckevort, I.D.K.Hiralal, A.Rijkeboer // Journal of Crystal Growth. 2001. Vol.233. P.567-582.
  13. Freij Sawsan J. Surface morphology and crystal growth mechanism of gibbsite in industrial Bayer liquors // Saw-san J. Freij, Gordon M. Parkinson // Hydrometallurgy. 2005. Vol.78. P.246-255.
  14. Pinakov V.I. TseflarTM – the centrifugal flash reactor for rapid thermal treatment of powdered materials / V.I.Pinakov, O.I.Stoyanovsky, A.A.Pikarevsky, B.E.Grinberg et al. // Chemical Engineering Journal. 2005. Vol.107. N 1-3. Р.157-161.

Similar articles

The mechanism of rock burst leading to ground destruction of mine openings
2016 M. G. Mustafin
Chemical and technological mechanisms of a alkaline aluminum silicates sintering and a hy-drochemical sinter processing
2016 V. M. Sizyakov
Ion velocity distribution function in arbitrary electric field plasma
2016 A. S. Mustafaev, V. S. Sukhomlinov
Electroextraction of cobalt from sulfate-chloride and sulfate solutions of cobalt and manganese in static conditions
2016 L. P. Khomenko, L. A. Voropanova
Tectonic development and granitoid magmatism of Northeast Asia in the late mesozoic
2016 V. I. Alekseev
Geochemical features and prospects of ore content in black slates in Tajmyr-Severnaya zem-lya gold formation
2016 A. N. Evdokimov, V. I. Fokin, N. K. Shanurenko