Submit an Article
Become a reviewer

Search articles for by keywords:
Anabar Shield

Geology
  • Date submitted
    2023-11-10
  • Date accepted
    2024-05-02
  • Date published
    2024-08-26

Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting

Article preview

The Saltakh Massif is located in the northern Anabar Shield, in the Saltakh shear-zone. It consists of two-pyroxene schists and plagiogneisses metamorphosed under granulite-facies conditions. Their chemical composition is consistent with that of a differentiated series of rocks ranging from gabbro to tonalites with abundant alaskitic gneissose granite veins and bodies. The rocks are mainly high-potassium (K2O/Na2O > 0.50), high-magnesium (mg# 50-70), low-titanium (TiO2 0.35-1.31 wt.%) with low TiO2 concentration in clino- and orthopyroxene. Normative olivine makes up 6-9 % of metagabbroic rocks. The rocks display well-defined negative Ti, Nb, Ta, and P anomalies typical of subduction magmatism. The two-pyroxene gneisses show high Sr/Y ratios of 67.6-88 and (La/Yb)N of 24.8-25.6. Saltakh rocks are part of a shoshonite series, as indicated by Nb/La, La/Yb, Th/Nb and Ce/Yb ratios. All the rocks display positive εNd(T) values of 1.9-4.1 and εSr(T) of 0.77-17.8 indicative of a mantle source of magma and T(Nd)DM of 2,20-2,26 Ga. U-Pb zircon dating (SHRIMP II) has shown that the protoliths of Saltakh melanocratic rocks were dated at 2100-2086 Ma, and those of two-pyroxene plagiogneisses of tonalite composition were dated at 2025±7 Ma. Alaskitic gneissose granites were dated at 1969±7 Ma. The study of the trace element composition of zircon has revealed general enrichment in LREE. High LREE concentrations are due to secondary zircon alterations and the shoshonitic pattern of the melt, the high-temperature conditions of crystallization, and an anomalous fluid regime. The geodynamic setting in which the Saltakh Massif was formed was consistent with a pericontinental magmatic arc. The formation of alaskitic gneissose granites was due to anatexis provoked by later collision processes. Saltakh magmatic rocks were formed simultaneously with magmatic rocks from the Khapchan prospect which occur farther south, and were studied earlier (2095±10 Ma tholeiitic metadiorites and 2030±17 Ma calc-alkaline metatonalites). We interpret them as part of a metamorphosed juvenile Paleoproterozoic suprasubduction complex.

How to cite: Gusev N.I., Romanova L.Y. Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting // Journal of Mining Institute. 2024. p. EDN SRITGO
Geology
  • Date submitted
    2022-04-18
  • Date accepted
    2022-05-25
  • Date published
    2022-07-26

U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield)

Article preview

The results of isotopic and geochronological study of zircon from rare-metal pegmatites of the Okhmylk deposit are presented. There were no reliable data on the age of lepidolite-spodumene-pollucite pegmatites of this and the other deposits spatially located within the Archean Kolmozero-Voron’ya greenstone belt. The earlier estimates of the pegmatite age indicate a broad time range from 2.7 to 1.8 Ga. Zircon in the studied pegmatites is characterized by inner heterogeneity, where core and rim zones are distinguished. Minor changes are observed in the core zones, they have a spotted structure and contain numerous uranium oxide inclusions. According to X-ray diffraction analysis, zircon crystallinity is preserved completely in these areas. Complete recrystallization with modification of the original U-Pb isotopic system occurred in the zircon rims. New U-Pb (zircon) isotopic and geochronological data of 2607±9 Ma reflect the time of crystallization of pegmatite veins in the Okhmylk deposit. Isotopic data with ages of ~1.7-1.6 Ga indicate later hydrothermal alteration. The obtained results testify to the Neo-Archean age of the formation of the Okhmylk deposit 2.65-2.60 Ga, reflecting the global age of pegmatite formation and associated the world's largest rare-metal pegmatite deposits.

How to cite: Kudryashov N.M., Udoratina O.V., Kalinin A.A., Lyalina L.M., Selivanova E.A., Grove M.J. U-Pb (SHRIMP-RG) age of zircon from rare-metal (Li, Cs) pegmatites of the Okhmylk deposit of the Kolmozero-Voron’ya greenstone belt (northeast of the Fennoscandian shield) // Journal of Mining Institute. 2022. Vol. 255. p. 448-454. DOI: 10.31897/PMI.2022.41
Electromechanics and mechanical engineering
  • Date submitted
    2021-03-05
  • Date accepted
    2021-04-28
  • Date published
    2021-09-20

Rational design justification of the tunnel boring shield executive body for the conditions of the mines of Saint Petersburg Metrostroy

Article preview

The article discusses the features of running tunnels in difficult mining and geological conditions of the Saint Petersburg Metrostroy using modern tunnel boring shields of Herrenknecht company with hybrid executive bodies equipped with a incisors and rock cutters. The work of a hybrid executive body is analyzed when driving along a heterogeneous bottomhole massif consisting of Cambrian clay with limestone interlayers. Theoretical and experimental studies of vibroactive cones, a graphical representation of the dependence of the depth of their penetration on the axial force and axial force together with the applied shock load (the dependences of the penetration depth are interpreted as a linear dependence) have been carried out. An increase in the intensity of destruction of a heterogeneous bottomhole massif consisting of Cambrian clay and limestone interlayers using vibroactive rock-cutting tools (spiked roller) was theoretically and experimentally confirmed, while the growth of the penetration rate is determined depending on the number of their parameters. The design is considered, the principle of operation and the method of power calculation of a rotary executive body equipped with vibroactive cutters are described, on the basis of which a nomogram of the dependence of the torque and performance of the tunnel boring shield on the feed rate of the executive body to the bottom is built.

How to cite: Yungmeister D.A., Yacheykin A.I. Rational design justification of the tunnel boring shield executive body for the conditions of the mines of Saint Petersburg Metrostroy // Journal of Mining Institute. 2021. Vol. 249. p. 441-448. DOI: 10.31897/PMI.2021.3.13
Geology
  • Date submitted
    2017-09-02
  • Date accepted
    2017-11-22
  • Date published
    2018-02-22

Age and metamorphic conditions of the granulites from Capral-Jegessky synclinoria, Anabar shield

Article preview

The paper presents the results of the isotope, geochemical and thermobarometric study of plagio-crystalline schist containing in the Upper Anabar series of the Anabar Shield. Granulite complexes of the paleoplatforms are the most important issue in addressing the fundamental problem of the Earth's crust origin and its composition. The early stages of crust formation which correspond to the deeply metamorphosed rocks of the platform basements, available for study within the shields, are of particular interest. The study of the age and metamorphic conditions of granulites by the case of the Upper Ananbar series allows specifying the stages the Anabar Shield's ancient crust formation. Isotope-geochemical (U-Pb geochronology for zircon and Sm-Nd for garnet-amphibole-WR) and thermoba-rometric (Theriak-Domino) studies of plagio-crystalline schist allowed to identify two Paleoproterozoic metamorphism stages within the territory of the Anabar Shield with an age of about 1997 and 1919 million years. The peak conditions of granulite metamorphism are determined as 775±35 С and 7.5±0.7 kbar, the parameters of the regressive stage are 700  C and 7 kbar. The sequence of the rocks metamorphic transformations can be assumed: high-thermal metamorphism of the granulite facies (T ≤ 810  C) and subsequent sub-isobaric (about 7 kbar) cooling to 700  C with a water activity increase and formation of Grt-Amp paragenesis corresponding to the transition from the granulite to amphibolite facies. Data on the REE and other trace elements distribution in zircon and rock-forming minerals obtained by the ion microprobe analysis contribute significantly to the isotope-geochemical data interpretation.

How to cite: Sergeeva L.Y., Berezin A.V., Gusev N.I., Skublov S.G., Melnik A.E. Age and metamorphic conditions of the granulites from Capral-Jegessky synclinoria, Anabar shield // Journal of Mining Institute. 2018. Vol. 229. p. 13-21. DOI: 10.25515/PMI.2018.1.13
Applied and fundamental research in physics and mathematics
  • Date submitted
    2009-09-19
  • Date accepted
    2009-11-24
  • Date published
    2010-06-25

Distribution of the wave of vertical polarization in the infinite plasma layer with the maximum of the electronic concentration

Article preview

The problem of dispersion of a flat wave of vertical polarisation by a plasma layer with a maximum of electronic concentration and infinitesimal losses is considered. With use of the theorem of an average in the new way it is proved that the wave of vertical polarisation will not pass for a point with the maximum of electronic concentration if loss in layer to direct to zero.

How to cite: Denisov A.V. Distribution of the wave of vertical polarization in the infinite plasma layer with the maximum of the electronic concentration // Journal of Mining Institute. 2010. Vol. 187. p. 59-63.