-
Date submitted2021-02-12
-
Date accepted2022-07-26
-
Date published2022-11-10
Manifestation of incompatibility of marine residual fuels: a method for determining compatibility, studying composition of fuels and sediment
- Authors:
- Radel R. Sultanbekov
- Andrey M. Schipachev
The results of studying the problem of active sediment formation when mixing residual fuels, caused by manifestation of incompatibility, are presented. A laboratory method has been developed for determining the compatibility and stability of fuels allowing identification of a quantitative characteristic of sediment formation activity. Laboratory studies were performed, and incompatible fuel components were identified. Tests were made to determine the quality indicators of samples and group individual composition of fuels. Results on the content of total and inorganic carbon in the obtained sediments were determined using Shimadzu TOC-V SSM 5000A. Chemical composition was determined and calculated on LECO CHN-628 analyser. Group composition of hydrocarbon fuels contained in the sediment was studied by gas chromato-mass spectrometry on GCMS-QP2010 Ultra Shimadzu. To obtain additional information on the structural group composition of fuel sediment, IR spectrometry was performed on IR-Fourier spectrometer IRAffinity-1. X-ray diffraction analysis of sediment samples was made using X-ray diffractometer XRD-7000 Shimadzu; interplanar distances d002 and d100 as well as Lс and Lа crystallite sizes served as the evaluation criteria. Microstructural analysis of total sediment was performed by scanning electron microscopy. The results of the research confirmed that the content of normal alkanes in the fuel mixture mainly affects sediment formation. Recommendations were drawn on preserving the quality of fuels and reducing sediment formation during storage and transportation.
-
Date submitted2021-04-15
-
Date accepted2021-07-27
-
Date published2021-10-21
Analysis of the application and impact of carbon dioxide media on the corrosion state of oil and gas facilities
Products of several currently operated production facilities (Bovanenkovskoye, Urengoyskoye oil and gas condensate fields, etc.) contain an increased amount of corrosive CO 2 . Effect of CO 2 on the corrosion of steel infrastructure facilities is determined by the conditions of its use. Carbon dioxide has a potentially wide range of applications at oil and gas facilities for solving technological problems (during production, transportation, storage, etc.). Each of the aggregate states of CO 2 (gas, liquid and supercritical) is used and affects the corrosion state of oil and gas facilities. Article analyzes the results of simulation tests and evaluates the corrosion effect of CO 2 on typical steels (carbon, low-alloy and alloyed) used at field facilities. The main factors influencing the intensity of carbonic acid corrosion processes in the main conditions of hydrocarbon production with CO 2 , storage and its use for various technological purposes are revealed. Development of carbon dioxide corrosion is accompanied and characterized by the localization of corrosion and the formation of defects (pitting, pits, etc.). Even alloyed steels are not always resistant in the presence of moisture and increased partial pressures of CO 2 , especially in the presence of additional factors of corrosive influence (temperature, aggressive impurities in gas, etc.).