Submit an Article
Become a reviewer

Search articles for by keywords:
трещина гидроразрыва

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-10-02
  • Date accepted
    2024-11-07
  • Date published
    2025-04-25

Laboratory studies of hydraulic fracturing of intersecting boreholes in a non-uniform stress field

Article preview

This study focuses on the features of hydraulic fracture propagation in intersecting boreholes in polymethyl methacrylate blocks in a non-uniform stress field. Glycerol aqueous solution and plasticine were used as the working fluids. According to linear fracture mechanics, a stress concentrator at the borehole intersection contributes to the beginning of crack formation, with further crack propagation occurring in the plane containing their axes. The relevance of this study is due to the search for innovative approaches and the development of technological solutions to address the issue of effective longitudinal crack formation and its further propagation in a rock mass under unfavourable stress field conditions. This paper provides a scheme of laboratory stand operation and a general view of the sealing packers used to isolate a specified interval when performing tests. The graphs of glycerol pressure versus injection time are presented, and the breakdown pressure in the blocks is specified. The shape of fractures formed during the indentation of plasticine into the borehole system was investigated. The findings of physical modelling indicate that longitudinal cracks are predominantly formed in the boreholes. The deviation of the crack trajectory from the vertical plane containing the borehole axes is primarily affected by the magnitude of the horizontal compressive stress field rather than the increase in the angle between them. In addition, the angles of inclination of the longitudinal crack plane measured at its intersection with the side face of the block are specified.

How to cite: Patutin A.V., Skulkin A.A., Rybalkin L.A., Drobchik A.N. Laboratory studies of hydraulic fracturing of intersecting boreholes in a non-uniform stress field // Journal of Mining Institute. 2025. Vol. 272 . p. 100-109. EDN JFQTTE
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-01
  • Date accepted
    2024-06-03
  • Date published
    2024-12-25

Study of the possibility of using high mineralization water for hydraulic fracturing

Article preview

The results of laboratory studies aimed at developing hydraulic fracturing fluid based on alternative sources of high mineralization water are presented. It is shown that Cenomanian sources have the most stable mineralization parameters, while bottom water and mixed waters collected from pressure maintenance systems differ significantly in their properties, with iron content varying several times, and hardness and mineralization undergoing substantial changes. The quality of the examined hydraulic fracturing fluids based on alternative water sources is confirmed by their impact on residual permeability, as well as residual proppant pack conductivity and permeability. The experimental results show similar values for these parameters. The comprehensive laboratory studies confirm the potential for industrial use of high mineralization water in hydraulic fracturing operations.

How to cite: Sultanov S.K., Mukhametshin V.S., Stabinskas A.P., Veliev E.F., Churakov A.V. Study of the possibility of using high mineralization water for hydraulic fracturing // Journal of Mining Institute. 2024. Vol. 270 . p. 950-962. EDN SLRNDJ
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-05-25
  • Date accepted
    2023-02-02
  • Date published
    2023-08-28

Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors

Article preview

Experimental data on the relationship of the residual shear strength of rocks in closed cracks with the functional characteristics of intact rocks – the tensile and compressive components of adhesion, the roughness of the crack surfaces, and the level of normal stresses are presented. A unified integrated approach determines the shear strength of intact and destroyed rocks, the residual shear strength of closed rough cracks has been developed. The approach provides for the selection of stress intervals corresponding to different types of fracture, for each of which a strength criterion is proposed, expressed in terms of functional characteristics of intact rock. An express method for estimating the residual shear strength of rocks by cracks with a rough surface has been developed, in which an improved method of loading samples with spherical indentors is used as a basic test method. The express method implements the transition from the data of mechanical tests of samples with spherical indentors to the shear strength indicators for cracks in the rock mass, taking into account the level of normal stresses and the roughness of the crack surfaces measured in field conditions. In this case the roughness scale developed by Barton is used. The express method is informative and available in the fieldwork.

How to cite: Korshunov V.A., Pavlovich A.A., Bazhukov A.A. Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors // Journal of Mining Institute. 2023. Vol. 262 . p. 606-618. DOI: 10.31897/PMI.2023.16
Oil and gas
  • Date submitted
    2020-06-15
  • Date accepted
    2020-06-15
  • Date published
    2020-06-30

Description of steady inflow of fluid to wells with different configurations and various partial drilling-in

Article preview

There are many equations of steady inflow of fluid to the wells depending on the type of well, presence or absence of artificial or natural fractures passing through the well, different degrees of drilling-in of the wellbores. For some complex cases, analytical solutions describing the inflow of fluid to the well have not yet been obtained. An alternative to many equations is the use of numerical methods, but this approach has a significant disadvantage – a considerable counting time. In this regard, it is important to develop a more general analytical approach to describe different types of wells with different formation drilling-in and presence or absence of fractures. Creation of this method is possible during modeling of fractures by a set of nodes-vertical wells passing from a roof to floor, and modeling of a wellbore (wellbores, perforation) by a set of nodes – spheres close to each other. As a result, based on this approach, a calculation algorithm was developed and widely tested, in which total inflow to the well consists of the flow rate of each node taking into account the interference between the nodes and considering the impermeable roof and floor of the formation. Performed modeling confirmed a number of known patterns for horizontal wells, perforation, partial drilling-in of a formation, and also allowed solving a number of problems.

How to cite: Iktissanov V.A. Description of steady inflow of fluid to wells with different configurations and various partial drilling-in // Journal of Mining Institute. 2020. Vol. 243 . p. 305-312. DOI: 10.31897/PMI.2020.3.305
Mining
  • Date submitted
    2018-11-05
  • Date accepted
    2019-01-01
  • Date published
    2019-04-23

Features of elementary burst formation during cutting coals and isotropic materials with reference cutting tool of mining machines

Article preview

The paper considers the cutting of brittle coals and rocks by a single cutter of a mining machine, in contrast to the generally accepted integral approach, different from the standpoint of the formation of successive elementary bursts that make up the cut. The process of the formation of an elementary bust in time is viewed as successive phases. Due to the complexity and multi-factor nature of the process, preference is given to experimental bench studies using reference cutters, isotropic materials, and real rock blocks. The bursting parameters values greatly influence the time of static forces action, the peculiarities of the formation of stress fields in the undercutter zone of the rock mass and the conditions for the emergence and development of main cracks in the near-cut zones during the cutting process. The accepted phase-energy method of analyzing the process, which most closely matches the structure of the studied process, revealed a more significant, than previously expected, effect on the cutting process, variability of cutting speed and potential energy reserve in the cutter drive. The paper discusses the possibility of purposeful formation of the parameters of elementary bursts. It describes new ways to improve the efficiency of cutting coal and rocks, in particular, reducing the maximum loads and specific energy consumption. It also considers the possibility of reducing the grinding of the rock mass and dust formation.

How to cite: Gabov V.V., Zadkov D.A., Nguyen K.L. Features of elementary burst formation during cutting coals and isotropic materials with reference cutting tool of mining machines // Journal of Mining Institute. 2019. Vol. 236 . p. 153-161. DOI: 10.31897/PMI.2019.2.153
Qestion of the geoecology
  • Date submitted
    2013-07-06
  • Date accepted
    2013-09-09
  • Date published
    2014-03-17

Primary forecast of density-related nonstationarity of cross-section upper part

Article preview

The state of profile higher part state and the directly depended housing stock are determined by geological factors and human influence. It both define time variation of the density of surface states structural and material systems. Gravimetric survey for the gravitational field temporal dynamics is the cheap method for its rapid assessment. Its description can be done at two levels: the structural one (qualitative) and the depth (quantitative).

How to cite: Movchan I.B., Asyanina V.Y. Primary forecast of density-related nonstationarity of cross-section upper part // Journal of Mining Institute. 2014. Vol. 207 . p. 190-194.
Applied and fundamental research in physics and mathematics
  • Date submitted
    2009-09-10
  • Date accepted
    2009-11-18
  • Date published
    2010-06-25

Numerical modelling of shear strain near to the crack

Article preview

The behaviour of a material near to a crack is considered at nonlinear shear strain. The plane problem of the nonlinear theory of elasticity in the variation form is solved. Some variants of boundary conditions are used. The numerical results received by a finite element method are presented.

How to cite: Mansurova S.E. Numerical modelling of shear strain near to the crack // Journal of Mining Institute. 2010. Vol. 187 . p. 75-78.