-
Date submitted2023-04-06
-
Date accepted2023-12-27
-
Date published2024-04-25
Localization of sites for the development of geomechanical processes in underground workings based on the results of the transformation and classification analysis of seismic data
The paper considers an approach to localizing the intervals of development of geomechanical processes in underground structures based on the classification and transformation of seismic data. The proposed approach will make it possible to identify the intervals of fracturing, rock decompression, water inflow and other geomechanical processes when interpreting the results of seismic surveys. The technique provides for the formation of matrices of longitudinal (Vp), transverse (Vs) velocities and velocity ratios (Vs/Vp) along the research profile to perform sequential filtration. The filtration results serve as the basis for the formation of a bank of informative materials for further classification. Based on the domestic KOSKAD 3D software, four approaches have been implemented for a combined digital model of the Vp, Vs and Vs/Vp parameters. One of the key elements in the classification process is to combine grids to increase the probability of detecting intervals with heterogeneous identification features. The result of the application of this methodical approach is the construction of a comprehensive interpretative model, on which potential zones of geomechanical risks development are clearly manifested.
-
Date submitted2022-04-07
-
Date accepted2023-04-21
-
Date published2023-08-28
Development of a new assessment system for the applicability of digital projects in the oil and gas sector
Digital transformation is one of the global trends that has covered most sectors of the economy and industry. For oil and gas companies, the introduction of digital technologies has become not just a trend, but one of the factors for ensuring competitiveness and maintaining a stable position in the market in a rapidly changing macro environment. At the same time, despite the positive effects achieved, digital transformation is a complex process from the point of view of implementation and is associated with high technological, financial, and economic risks. The work aims to develop and test a new system for evaluating the applicability of digital projects in the oil and gas sector. The research methodology includes the application of the Gartner curve, methods of expert assessments, and tools for assessing the economic efficiency of investment projects. The developed assessment system is based on a comprehensive accounting of four components: the level of digital maturity of the company; compliance of the implemented technology with the goals and objectives of the organization; the level of reliability of the implemented technology; the level of innovation of the implemented project. Particular attention is paid to the practical testing of the proposed methodology based on the evaluation of a digital project implemented by a Russian oil and gas company.
-
Date submitted2022-10-29
-
Date accepted2023-02-13
-
Date published2023-04-25
The use of unmanned aerial photography for interpreting the technogenic transformation of the natural environment during the oilfield operation
The traditional approach to monitoring observations of the technogenic processes development in oilfields, which consists in determining the concentration of marker pollutants in various natural environments, does not provide the necessary completeness of information and the efficiency of its receipt. The paper considers an example of expanding the range of observations due to unmanned aerial photography and a number of other methods. Interpretation signs (for panchromatic survey) were determined that register such consequences of technogenic transformation of the natural environment as mechanogenesis, bitumization, and halogenesis. Technogenic mechanogenesis is understood as a physical violation of the integrity of ecosystems, the movement of soils and grounds. Bitumization is expressed in the migration of petroleum hydrocarbons through soils, ground, surface, subsurface, and underground waters, and their destruction. Salt migration in these media is defined as halogenesis. The most reliable indicators are linearly elongated areas of dead forests, dark red spots in drying microdepressions and reservoirs. It was found out that the oilfield impact on the raised bog leads to anthropogenic eutrophication, the introduction of plant species, uncharacteristic coenotic groups, the replacement of subshrubs with grasses, and morphometric changes in forest pine. In the peat deposits of the disturbed area, an unusual interlayer of whitish, undecomposed moss was recorded. The moment of the beginning of a pronounced technogenic transformation was registered in the course of work with the archive of multispectral space images. Continuous remote sensing with the help of unmanned aerial photography and interpretation by sedimentological, geobotanical methods significantly expand the possibilities of studying the technogenic transformation of the natural environment. To ensure environmental safety, it is advisable to develop remote methods and technologies to include them in the environmental monitoring system.
-
Date submitted2022-06-09
-
Date accepted2022-11-17
-
Date published2022-12-29
Drilling of deep and ultra-deep wells for prospecting and exploration of new raw mineral fields
Scientific and technological progress over the last century has led to an enormous increase in the consumption of minerals, including energy resources. Most of the exploited oil and gas fields are already considerably depleted, so it is necessary to search for new hydrocarbon resources, particularly at great depths. Deep drilling plays a special role in solving this problem. The article considers the world and Russian experience of ultra-deep wells drilling. The methods and technologies used in the construction of wells, as well as complications and accidents occurring during their drilling were analyzed. The analysis revealed that the existing limitations for drilling parameters of deep and ultra-deep wells are caused by the technical characteristics of surface and bottomhole drilling equipment, which do not meet the extreme drilling conditions. The directions for development of deep and ultra-deep well drilling machinery and technologies are suggested. The notion of extreme rock and geological drilling conditions is introduced, which describes drilling in conditions of hydrostatic pressure of flushing fluid column and high bottomhole temperature both at stable and unstable wellbore conditions, coming close to the upper limit of operating technical characteristics of bottomhole assembly, the drill string and flushing fluid.
-
Date submitted2019-05-30
-
Date accepted2019-09-03
-
Date published2020-02-25
Study on influence of two-phase filtration transformation on formation of zones of undeveloped oil reserves
- Authors:
- S. I. Grachev
- V. A. Korotenko
- N. P. Kushakova
In order to study the process of fluid filtration during flooding of an oil field, article uses Rapoport – Lis model of non-piston oil displacement by water. During plane-radial filtration in a homogeneous formation, radii of disturbance zones are determined with and without taking into account the end effect. Influence of changes in value of capillary pressure gradient on distribution of water saturation coefficient in the non-piston displacement zone for high and low permeability reservoirs is revealed. Application of an element model for a five-point injection and production well placement system showed that, using traditional flooding technology, flat-radial fluid filtration is transformed into rectilinear-parallel. At solving equation of water saturation, Barenblatt method of integral relations was used, which allows determining the transformation time. By solving the saturation equation for rectilinear-parallel filtration, change in the value of water saturation coefficient at bottomhole of production well for an unlimited and closed deposit is determined. It is shown that an increase in water cut coefficient of a production well is possible only for a closed formation. To determine coefficient of water saturation in a closed deposit, a differential equation with variable coefficients is obtained, an iterative solution method is proposed. In the element of the five-point system, oil-saturated zones not covered by development were identified. For channels of low filtration resistance, conditions for their location in horizontal and vertical planes are established. It is shown that, at maintaining formation pressure, there is an isobar line in formation, corresponding to initial formation pressure, location of which determines direction of fluid crossflow rates. Intensity of crossflows affects application efficiency of hydrodynamic, physical and chemical, thermal and other methods of enhanced oil recovery.
-
Date submitted2019-07-21
-
Date accepted2019-09-20
-
Date published2020-02-25
Assessment of operational reliability of quarry excavator-dump truck complexes
- Authors:
- V. M. Kurganov
- M. V. Gryaznov
- S. V. Kolobanov
The method proposed in the article is based on the mathematical apparatus for quantitative assessment of the reliability of majority schemes of structural redundancy of transport processes, which provide the availability and usage of several backup delivery channels in the transport process in case of any malfunction. The principle of multi-channel haulage is commonly used in quarries for transportation of overburden and minerals from benches by dump trucks, when excavators and dump trucks performing cyclic operations function as a single excavator-dump truck complex. This pattern of work significantly increases the likelihood of fulfilling the daily plan for transporting rock mass due to the redistribution of dump trucks between mining and overburden excavators in the event of failure of one or more units of mining and handling equipment. The reliability of excavator-dump truck complexes is assessed in three stages: initial data collection for mathematical modeling of excavator-dump truck complex performance; solving the problem of optimizing the distribution of dump trucks between excavators, ensuring maximum productivity of the excavator-dump truck complex; assessment of the reliability of its work depending on the probability of fulfilling the daily plan for the transportation of rock mass. The proposed method is implemented as part of a computer program and makes it possible to automate the operational management of the process of transporting rock mass in a quarry using a mobile application. The developed guidelines can be used for any quarries with automobile transport, regardless of the type of mineral extracted, the mining method, the loading pattern, the capacity of the excavation and loading equipment fleet, and the capacity of operated dump trucks.
-
Date submitted2019-01-10
-
Date accepted2019-03-02
-
Date published2019-06-25
Modeling of the welding process of flat sheet parts by an explosion
- Authors:
- M. A. Marinin
- S. V. Khokhlov
- V. A. Isheyskiy
The list of materials subject to explosive welding is very extensive and amounts to several hundred combinations of various alloys and metals, and the variety of explosive welding schemes has more than a thousand options. In almost all technical solutions, the process involves the sequential creation of physical contact of the materials to be welded and their connection due to plastic deformation of the contacting surfaces. The strength of such a connection depends on the mode of the welding process. With the correct selection of the parameters of the mode, it is possible to obtain a high-quality connection of the required strength. However, the experimental selection of such options is a very laborious and costly process. Computer simulation and application of mathematical models for solving dynamic problems of explosion mechanics simplifies the search for optimal parameters and allows to predict the expected result in the shortest possible time. The article discusses the issues of modeling of explosive welding of metals, calculations related to the parameters of the process of formation of the weld using the Ansys Autodyn software package. A model is presented for analyzing the deformation process of explosion welding of a plate and its connection with a matrix. The main parameters of explosion welding (velocity, pressure, time) are determined. The adequacy of the obtained values was evaluated in the systems aluminum – copper and copper – steel. It also provides a comparative analysis of simulation results and field experiments. Based on numerical calculations, a conclusion was substantiated on the suitability of the model obtained for a preliminary analysis of the main welding parameters at the preparatory stage.
-
Date submitted2018-11-03
-
Date accepted2019-01-16
-
Date published2019-04-23
Interpretation of the tracer investigation results considering convective mass transfer
- Authors:
- V. A. Korotenko
- S. I. Grachev
- A. B. Kryakvin
The paper discusses the results of interpreting well tracer studies. It is shown that from the law of mass conservation it follows that when filtering a volume of an indicator, part of the injected tracer flows into the matrix. With the flow of fluid containing the indicator from the low-filtration resistance channel (LFR) into the surrounding matrix, the linear dimensions of the flow area depend on the permeability and porosity properties of the high-permeability channel and the matrix. While another part of the tracer moves toward the production well, its mass is lost due to diffusion processes. From the solution of the diffusion equation, it follows that the initial concentration of the tracer decreases in the course of filtration along the LFR channel. To interpret the results of the tracer studies, different cases of the LFR channels' location in the volume of the productive formation are considered. The varied parameter w allows characterizing the presence of several peaks in the concentration of the indicator and calculation the filtration parameters of the LFR channels. Depending on the known technological indices, several methods for determining pore volumes in the LFR channels have been proposed. To reduce the water cut in producing wells and to apply the technology of changing or aligning the injectivity profiles, calculations of the pore channels' radii in the mass of highly permeable seams are presented. It is shown that the volume of the chemical reagent pumped into the injection well to isolate the LFR channel is affected by the linear dimensions of the drainage area for the aqueous solution of indicator. Examples of the calculation for the permeability and porosity parameters of the LFR, the volume of pore channels necessary to isolate water inflow, and the radii of pore filtration channels, which influence the selection of the size of chemical reagent molecules, are given.
-
Date submitted2015-08-24
-
Date accepted2015-10-16
-
Date published2016-04-22
Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension
- Authors:
- L. A. Goldobina
- P. S. Orlov
Nondestructive optical methods for measuring of the «thick» films thickness of the order of 0,001-1,00 mm are analyzed. It is shown that using the laser beam radiation and modern optical and electronic schemes possible to decrease the time of single measurement to 1ms and less at the measuring frequency of 10-50 hz. The possibility of measuring thickness and spreading coefficient and evaporation kinetics of liquid films is demonstrated. A new computer method of the data processing aimed to determine the film thickness from the angle dependence of the laser beam reflection coefficient by the film is offered. The offered procedure and the experimental technique realizing it permits to decrease the thickness determination uncertainty to the order of ten.
-
Date submitted2010-07-28
-
Date accepted2010-09-18
-
Date published2011-03-21
Assessment of alluvial gold-bearing raw materials from the permafrost zone for justification of combined geotechnology of gold heap leaching
- Authors:
- S. B. Tataurov
The paper presents results of cryogenetic impact on mineral composition and geotechnological properties of alluvial gold-bearing raw materials of natural and man-made origin. In particular, distinctive features in mineral composition of alluvial deposits are described within the permafrost zone and outside it as well as the nature, mechanisms and peculiar features in reduction of man-made gold amalgams are shown. The results obtained were used to justify the expediency of implementation of the combined heap gold ore leaching technology at alluvial deposits in the permafrost zone, which includes preliminary concentration of coarse, medium and fine gold as well as the gold amalgam.
-
Date submitted2008-10-12
-
Date accepted2008-12-17
-
Date published2009-12-11
Principles of development of geological engineering and geological criteria for safe burial of low radioactive wastes in lower cambrian blue clays in the Leningrad region
- Authors:
- R. E. Dashko
It is noticed that the chosen territory for nuclear-waste disposal in Lower Cambrian clay massif nearby Koporje of Leningrad region takes place in a tectonic zone. Lower Cambrian clays are considered as the block-fractured rock mass having a depth zone structure. The long radioactive irradiation of dark blue clays has led to transformation of their structure, physical-chemical and physical-mechanical properties, and also to activization of microbial activity. Nine criteria to the geoenvironmental and engineering geological characteristics allowing in a complex to estimate safety and reliability of a nuclear-waste disposal in clay formations on an example of dark blue clays are suggested.