-
Date submitted2022-11-02
-
Date accepted2023-03-02
-
Date published2023-04-25
Environmental damage from the storage of sulfide ore tailings
The mining industry is one of the most challenging in ensuring environmental safety. During the last century, the Karabash Copper Smelting Plant was processing sulfide ores and depositing the tailings into storage facilities that now occupy an area of more than 50 hectares. To date, abandoned tailings are a significant source of natural water, air, and soil pollution in the Karabash city district. The article comprehensively examines the environmental impact of the Karabashmed copper smelter, one of the oldest metallurgical enterprises in Russia. The effects of seepage from the two Karabashmed tailings facilities on water resources were assessed. We revealed that even outside the area of the direct impact of processing waste, the pH of natural water decreases to values 4-5. Further downstream, the infiltration water from the tailings pond No. 4 reduces the pH of river water to 3.0-3.5. The presented results of environmental engineering surveys are derived from sampling water and bottom sediments of the Ryzhiy Stream and the Sak-Elga River, sample preparation, and quantitative chemical analysis. The study revealed significant exceedances of the maximum permissible concentrations for a number of chemical elements in the impact zone of the copper ore processing tailings.
-
Date submitted2021-02-24
-
Date accepted2022-04-06
-
Date published2022-07-13
Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow
The reduction kinetics of serial phase transitions of iron oxides during reduction to a metallized state with different modes of technical hydrogen supply has been studied and substantiated. The results of the pellets formation when 3-5 % molasses is added to the red mud as a binding reagent are presented. The dependences of the reduction rate of iron oxides on the hydrogen flow rate are obtained. Based on the results of the experiments, a kinetic model was constructed, and with the help of X-ray phase and spectral analysis, it was proved that the agglomerates formed after heat treatment received high strength due to the adhesion of reduced iron particles with red mud particles. The use of a new type of charge materials in melting units will reduce the amount of emissions and dust fractions, as well as increase the metal yield.
-
Date submitted2022-01-24
-
Date accepted2022-04-26
-
Date published2023-04-25
Forecast of radionuclide migration in groundwater of the zone affected by construction drainage at the Leningrad NPP-2
The distribution of natural (at the level of global background) and technogenic radionuclides in groundwater of the industrial zone in Sosnovy Bor town, where several nuclear power facilities are operating, was analyzed. The main technogenic radionuclides recorded in groundwater samples are cesium ( 137 Cs), strontium ( 90 Sr), and tritium isotopes. The first two aquifers from the surface are subject to contamination: the Quaternary and the upper zone of the Lomonosov aquifer. Based on extensive material on the engineering and geological studies of the work area, a 3D geological model and hydrodynamic and geomigration models of the industrial zone were constructed. By means of modeling, the extent and nature of changes in hydrogeological conditions of area resulting from the construction and operational drainage of the new stage of the Leningrad Nuclear Power Plant (LNPP-2) were determined. The “historical” halo of radioactive contamination of groundwater forming (1970-1990) at the site adjacent to the NPP, where the storage facility of low- and medium-level radioactive waste is located, falls into the zone of influence. Interpretation of monitoring data allowed obtaining the migration parameters for predictive estimates. Modeling has shown that during the time of the LNPP-2 operation there was no intake of contaminated water by the drainage system of the new power plant.
-
Date submitted2020-06-14
-
Date accepted2020-06-14
-
Date published2020-06-30
Geochemical approach in assessing the technogenic impact on soils
- Authors:
- Galina I. Sarapulova
The soil assessment was carried out in the technogenically-affected area of Irkutsk Oblast with the geochemical approach as a key geoecological method using physical and chemical techniques of analysis and ecodiagnostics. Diagnostic signs of the disturbed natural properties of the soil were revealed up to a depth of 40 cm in the profile based on macro- and micromorphometric parameters. The content of heavy metals (HM) – Pb, Zn, Hg, and Cu with an excess of standards was determined, and empirical HM – pH correlations were obtained by statistical clustering of the data array. The contributions of additional factors affecting the chemical element distribution in the soil layer were investigated. Significant soil contamination with sulfates and the possibility of implementing the ion-exchange of HM andfor element immobilization were revealed. It was shown that reactions with sulfates and the influence of pH, HM exchange processes involving mobile K and P can determine the nature of the described chemical element distribution in the multi-factor-contaminated technogenic soil. However, the effectiveness of such types of interaction is different for each metal and also depends on the quantitative ratio of substances and soil characteristics, even under a minor change in pH. Two-parameter correlations of HM distribution in sulfate-contaminated soils confirmed the different degrees of involvement of chemical elements in these types of interactions. The results obtained and the identified factors are of applied significance and can be used as the basis for geoecological differentiation of the contaminated soil, as well as for determining local geochemical fields in the technogenesis zone. Areas of advanced research are related to three-dimensional modeling for a more complete study of the cause-and-effect relationships of geochemical parameters.
-
Date submitted2014-09-15
-
Date accepted2014-11-15
-
Date published2015-06-26
Environmentally safe methods of technogenic deposits conservation
- Authors:
- M. A. Pashkevich
The results of monitoring and evaluating the negative impact caused by waste storage (technogenic deposits) of the mineral resource sector are presented. The research findings on the development of environmentally sound and costeffective ways of technogenic deposits conservation are given. The method is based on the formation of screens made of polymeric materials sintered with soil. As a result of laboratory studies and experiments on test sites the optimal technology of the screen formation was selected.
-
Date submitted2010-07-28
-
Date accepted2010-09-18
-
Date published2011-03-21
Assessment of alluvial gold-bearing raw materials from the permafrost zone for justification of combined geotechnology of gold heap leaching
- Authors:
- S. B. Tataurov
The paper presents results of cryogenetic impact on mineral composition and geotechnological properties of alluvial gold-bearing raw materials of natural and man-made origin. In particular, distinctive features in mineral composition of alluvial deposits are described within the permafrost zone and outside it as well as the nature, mechanisms and peculiar features in reduction of man-made gold amalgams are shown. The results obtained were used to justify the expediency of implementation of the combined heap gold ore leaching technology at alluvial deposits in the permafrost zone, which includes preliminary concentration of coarse, medium and fine gold as well as the gold amalgam.