Submit an Article
Become a reviewer

Search articles for by keywords:
рудничный локомотив

Energy industry
  • Date submitted
    2023-03-14
  • Date accepted
    2023-06-20
  • Date published
    2023-07-19

The wireless charging system for mining electric locomotives

Article preview

The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.

How to cite: Zavyalov V.M., Semykina I.Y., Dubkov E.A., Velilyaev A.- han S. The wireless charging system for mining electric locomotives // Journal of Mining Institute. 2023. Vol. 261 . p. 428-442. EDN JSNTAQ
Mining
  • Date submitted
    2021-01-21
  • Date accepted
    2021-04-19
  • Date published
    2021-04-26

Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives

Article preview

Equipment with diesel engines is used in all mining enterprises. Monorail diesel transport is of great importance in coal mines, as it facilitates the heavy labor of workers when transporting materials and people, fixing mining workings, refueling and repairing equipment, which leads to an increase in the speed of tunneling operations. Reducing the concentration of harmful gases from diesel-hydraulic locomotives at the workplaces of coal mine locomotive drivers can be ensured by the use of additives to diesel fuel that reduce the volume of harmful gas emissions during the operation of diesel-hydraulic locomotives. Additive ester-based on vegetal oil in the amount of 5 mass % in a mixture with hydrotreated diesel fuel reduces the concentration of carbon monoxide by 19-60 %, nitrogen oxides by 17-98 %, depending on the operating mode of the engine, the smoke content of the exhaust gases is reduced to 71 %. There is an improvement in working conditions at the workplace of the driver of a diesel-hydraulic locomotive by the chemical factor due to the reduction of the class of working conditions from 3.1. to 2.

How to cite: Korshunov G.I., Eremeeva A.M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives // Journal of Mining Institute. 2021. Vol. 247 . p. 39-47. DOI: 10.31897/PMI.2021.1.5
Mining
  • Date submitted
    2020-06-12
  • Date accepted
    2020-10-28
  • Date published
    2020-11-24

Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining

Article preview

The paper is devoted to the problem of increasing energy efficiency of coalmine methane utilization to provide sustainable development of geotechnologies in the context of transition to a clean resource-saving energy production. Its relevance results from the fact that the anthropogenic effect of coalmine methane emissions on the global climate change processes is 21 times higher than the impact of carbon dioxide. Suites of gassy coal seams and surrounding rocks should be classified as technogenic coal-gas deposits, while gas extracted from them should be treated as an alternative energy source. Existing practices and methods of controlling coalmine methane need to be improved, as the current “mine – longwall” concept does not fully take into account spatial and temporal specifics of production face advancement. Therefore, related issues are relevant for many areas of expertise, and especially so for green coal mining. The goal of this paper is to identify patterns that describe non-linear nature of methane release dynamics in the underground boreholes to provide sustainable development of geotechnologies due to quality improvement of the withdrawn methane-air mixture. For the first time in spatial-temporal studies (in the plane of CH 4 - S ) of methane concentration dynamics, according to the designed approach, the parameter of distance from the longwall ( L ) is introduced, which allows to create function space for the analyzed process (CH 4 of S-L ). Results of coalmine measurements are interpreted using the method of local polynomial regression (LOESS). The study is based on using non-linear variations of methane concentration in the underground boreholes and specific features of their implementation to perform vacuum pumping in the most productive areas of the undermined rock mass in order to maintain safe aerogas conditions of the extraction block during intensive mining of deep-lying gassy seams. Identification of patterns in the influence of situational geomechanical conditions of coal mining on the initiation of metastable gas-coal solution transformation and genesis of wave processes in the coal-rock mass allows to improve reliability of predicting methane release dynamics, as well as workflow manageability of mining operations. Presented results demonstrate that development of high-methane Donbass seams is associated with insufficient reliability of gas drainage system operation at distances over 40 m behind the longwall face. Obtained results confirm a working hypothesis about the presence of spatial migration of methane concentration waves in the underground gas drainage boreholes. It is necessary to continue research in the area of estimating deviation angles of “advance fracturing” zone boundaries from the face line direction. Practical significance of research results lies in the possibility to use them in the development of scientific foundation for 3D gas drainage of a man-made coal-methane reservoir, taking into account spatial and temporal advancement of the production face.

How to cite: Dzhioeva A.K., Brigida V.S. Spatial non-linearity of methane release dynamics in underground boreholes for sustainable mining // Journal of Mining Institute. 2020. Vol. 245 . p. 522-530. DOI: 10.31897/PMI.2020.5.3
Geoecology and occupational health and safety
  • Date submitted
    2016-09-23
  • Date accepted
    2016-11-07
  • Date published
    2017-02-22

Development of energy-saving technologies providing comfortable microclimate conditions for mining

Article preview

The paper contains analysis of natural and technogenic factors influencing properties of mine atmosphere, defining level of mining safety and probability of emergencies. Main trends in development of energy-saving technologies providing comfortable microclimate conditions are highlighted. A complex of methods and mathematical models has been developed to carry out aerologic and thermophysical calculations. Main ways of improvement for existing calculation methods of stationary and non-stationary air distribution have been defined: use of ejection draught sources to organize recirculation ventilation; accounting of depression losses at working intersections; inertance impact of air streams and mined-out spaces for modeling transitory emergency scenarios. Based on the calculation algorithm of airflow rate distribution in the mine network, processing method has been developed for the results of air-depressive surveys under conditions of data shortage. Processes of dust transfer have been modeled in view of its coagulation and settlement, as well as interaction with water drops in case of wet dust prevention. A method to calculate intensity of water evaporation and condensation has been suggested, which allows to forecast time, duration and quantity of precipitation and its migration inside the mine during winter season.

How to cite: Kazakov B.P., Levin L.Y., Shalimov A.V., Zaitsev A.V. Development of energy-saving technologies providing comfortable microclimate conditions for mining // Journal of Mining Institute. 2017. Vol. 223 . p. 116-124. DOI: 10.18454/PMI.2017.1.116
Electromechanics and mechanical engineering
  • Date submitted
    1953-07-21
  • Date accepted
    1953-09-12
  • Date published
    1954-12-04

К вопросу автоматизации рудничного подъема с асинхронным приводом при скипах с донной разгрузкой

Article preview

Автоматизация подъема при скипах с донной разгрузкой в период замедления может быть осуществлена применением режима динамиче­ского торможения асинхронного подъемного двигателя. На рис. 1 расчетная диаграмма скорости в период замедления t 3 изо­бражена пунктирной линией λр. В период разгрузки t 4 ' предположена постоянная скорость v 3 (линия рφ), которая в течение периода t 4 "па­дает до нуля по линии ϕѱ. Согласно диаграмме усилий асинхронной машины, изображенной на рис. 2, разгон подъемного двигателя в период пуска происходит по ло­маной линии BCDEFGHIKLT,варьирующей около заданного (расчет­ного) значения усилия F 1 как около среднего значения между крайними пределами F 1 ' и F 1 ". По окончании периода пуска наступает период полного хода, в тече­ние которого движущее усилие следует за всеми изменениями статиче­ского усилия. В предположении статически неуравновешенной системы подъема статическое усилие, а следовательно, и движущее усилие, раз­виваемое двигателем, работающим на естественной характеристике R 2 , пусть изменяется от значения F' s 2 в начале периода полного хода (точ­ка N')до величины F" s 2 в конце этого периода (точка N). По окончании периода полного хода наступает период замедления t 3 , в течение кото­рого предположен тормозной режим, осуществляемый в виде динамиче­ского торможения. Асинхронная машина с двигательного режима на характеристике R 2 при скорости v н переводится на динамический режим путем переключения статора с переменного тока на постоянный.

How to cite: Unknown // Journal of Mining Institute. 1954. Vol. 32 № 1. p. 10.
Electromechanics and mechanical engineering
  • Date submitted
    1953-07-25
  • Date accepted
    1953-09-19
  • Date published
    1954-12-04

Автоматизация шахтного грузового подъема с асинхронным приводом

Article preview

Преимущества автоматического подъема, заключающиеся в увели­чении производительности, повышении надежности работы и безопасно­сти, а также освобождении труда высококвалифицированного маши­ниста и большое распространение в Советском Союзе подъемных уста­новок с асинхронными двигателями делают проблему автоматизации подъема с асинхронным приводом весьма актуальной. Решение этой проблемы начато с 1932—1933 гг. Однако, несмотря на двадцатилетний срок, истекший с момента первых исследований по этому вопросу, до сих пор задача полностью не разрешена. Причина этого кроется в неблагоприятных механических свойствах асинхронного двигателя, затрудняющих автоматизацию подъема, а также в известной односторонности предлагавшихся до сих пор решений, основанных, как правило, на использовании в период замедления колодочных механиче­ских тормозов. Несмотря на многочисленные исследования, проведенные в основном В. Б. Уманским и В. С. Тулиным, создать хорошие регуля­торы хода, воздействующие на механический тормоз подъемной машины, до сих пор не удалось. И если автоматизация пуска подъемной машины является на сегодня решенной, то вопрос управления подъемной маши­ной в период замедления требует еще теоретической и эксперименталь­ной проработки. Анализ работы различных систем автоматизации подъема, основан­ный на сопоставлении механических характеристик различных тормоз­ных устройств, позволяет критически оценить эти системы и наметить новые направления в решении задачи автоматизации грузового подъема с асинхронным приводом.

How to cite: Unknown // Journal of Mining Institute. 1954. Vol. 32 № 1. p. 16.
Mining
  • Date submitted
    1951-07-28
  • Date accepted
    1951-09-07
  • Date published
    1952-03-26

On the issue of dynamic braking as applied to a mine hoist with an asynchronous drive

Article preview

In practice, it may be necessary to lower people down a mine shaft at a reduced speed compared to the full speed of lifting the load. This makes it necessary to use braking operations, which in practice are often carried out using a mechanical brake. However, prolonged operation of a mechanical brake is accompanied by undesirable phenomena: excessive heating and wear of the brake pads, which necessitates the use of cooling devices and frequent replacement of worn pads with new ones. Electric braking systems are free from these drawbacks, of which in the case under consideration both counter-current (counter-switching) and dynamic braking can be used. To be able to implement the counter-current mode, the lifting unit must be equipped with a load rheostat, which, compared to an ordinary starting rheostat, must be designed for longer operation. In addition, this rheostat must have additional sections with a correspondingly increased resistance to be able to obtain small braking moments. The main disadvantage of counter-current braking is its uneconomical nature, due to the significant consumption of energy from the network. As is known, the power consumed in the counter-current mode from the network depends on the magnitude of the braking torque and synchronous speed and does not depend on the actual speed of descent. The energy consumed from the network is inversely related to the speed of descent.

How to cite: Shklyarskii F.N. On the issue of dynamic braking as applied to a mine hoist with an asynchronous drive // Journal of Mining Institute. 1952. Vol. 26 № 1. p. 3-9.
Mining
  • Date submitted
    1951-07-28
  • Date accepted
    1951-09-11
  • Date published
    1952-12-23

The influence of parasitic movements of the train on the operation of mine locomotives

Article preview

The movement of a train with a locomotive under mine haulage conditions is a very complex process, consisting of a number of movements of the entire system as a whole and its individual parts. In addition to the main - useful forward - movement of the train, there are a number of secondary movements of a parasitic nature. These may include, for example, the impact of cars on each other and on the locomotive, twitching of the locomotive, shaking, rocking, wobbling, rolling, etc. From a production point of view, all of the listed parasitic movements are of great importance. They directly affect the main - forward - movement and, in addition, determine the stability of the rolling stock, cause its derailment, wear of the running gear and the track, and also affect the structural elements of the track and the rolling stock as a whole. However, the study of these issues remains in its infancy even in relation to the theory of traction on the tracks of mainline railways, which has a more long-standing practice than the theory of mine haulage electric locomotive haulage. The issues of the theory of parasitic movements of rolling stock on mainline railways are considered mainly only from the point of view of their influence on the design of the track and rolling stock.

How to cite: Rysev A.V. The influence of parasitic movements of the train on the operation of mine locomotives // Journal of Mining Institute. 1952. Vol. 27 № 1. p. 65-89.
Mining
  • Date submitted
    1951-07-24
  • Date accepted
    1951-09-10
  • Date published
    1952-12-23

Application of cyclograms for mine transport calculations

Article preview

When selecting units and determining the optimal parameters of the designed machines, as well as during mass calculations during research, it is most convenient to use graphical calculation methods. Graphic works are characterized by the speed of operations, significant simplicity, high accuracy and, which is especially important when choosing options - clarity. There are many different methods of graphical calculations. One of the most common is the nomographic method, based on the graphical representation of functional dependencies. The method of vector calculations is also widely used. Cyclographic methods are used for circular functional dependencies and represent a type of vector calculations. Cyclograms are distinguished by their clarity and simplicity of construction. They can be characteristics of machines and their operating processes. The use of cyclograms is known in electrical engineering, mechanics, elasticity theory, etc. Cyclograms have not been used in transport. The proposed work shows the general principles of cyclographic calculations that can be used both for studying transport and for calculating machine elements. When selecting units and determining the optimal parameters of the designed machines, as well as during mass calculations during research, it is most convenient to use graphical calculation methods. Graphic works are characterized by the speed of operations, significant simplicity, high accuracy and, which is especially important when choosing options - clarity. There are many different methods of graphical calculations. One of the most common is the nomographic method, based on the graphical representation of functional dependencies. The method of vector calculations is also widely used. Cyclographic methods are used for circular functional dependencies and represent a type of vector calculations. Cyclograms are distinguished by their clarity and simplicity of construction. They can be characteristics of machines and their operating processes. The use of cyclograms is known in electrical engineering, mechanics, elasticity theory, etc. Cyclograms have not been used in transport. The proposed work shows the general principles of cyclographic calculations that can be used both for studying transport and for calculating machine elements.

How to cite: Filatov N.V. Application of cyclograms for mine transport calculations // Journal of Mining Institute. 1952. Vol. 27 № 1. p. 153-162.