Submit an Article
Become a reviewer

Search articles for by keywords:
датчик

Mining
  • Date submitted
    2020-05-24
  • Date accepted
    2020-07-23
  • Date published
    2020-11-24

Estimation of ore contour movements after the blast using the BMM system

Article preview

Measurement of ore movements by blast is one of the key components of the quality control system at any mining enterprise, which allows to obtain the accuracy necessary for determining the location of ore contours. About 15 years ago, a monitoring system was developed in Australia that allows mine personnel to make three-dimensional measurements of ore blocks movement at each blast. Studies have shown that ore blocks movement is extremely variable, and it characterized by a complete absence of a deterministic component. The consequence is that modeling ore contour movements during the blast will be inaccurate, and the best results for the mining enterprise can only be achieved by directly measuring the movement. The technology of measuring ore contours movements considered in the article is based on three-dimensional movement vectors obtained in different parts of the blasted block, characterized by different movements. It is obvious that the accuracy of determining the ore contours position after the blast is proportional to the number of measurements made on the block. Currently, the movement control technology based on the BMM system is actively used by global mining companies, its use reduces losses and dilution of ore. In 2017, the pilot implementation of the BMM system was started at the Olympiadinsky GOK, and the system is being implemented in several Russian mining companies.

How to cite: Rakhmanov R.A., Loeb J., Kosukhin N.I. Estimation of ore contour movements after the blast using the BMM system // Journal of Mining Institute. 2020. Vol. 245 . p. 547-553. DOI: 10.31897/PMI.2020.5.6
Electromechanics and mechanical engineering
  • Date submitted
    2017-09-03
  • Date accepted
    2017-11-04
  • Date published
    2018-02-22

Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink

Article preview

In last 20 years segment of electric drives with permanent magnet synchronous motors has increased. This type of motors has better technical characteristics compared to induction motors, but has problems in actual implementation, one of which is the requirement of rotor position data. It is possible to implement with use of sensors or without them by means of motor state observer. The paper describes problems of sensorless vector control system for permanent magnet synchronous motors. The vector control system with state observer for permanent magnet synchronous motors is described. Synthesis of sliding mode observer for rotor speed and position is presented. The algorithm is implemented by development of model in Matlab Simulink environment with support by Texas Instruments processors support blocks. Experimental comparison of results of rotor angle state calculation and the data obtained by rotor position sensors was conducted. Research objective is a development of control algorithm, which has required precision for calculation of rotor start angle, high range of speed regulation and resistance to drift of motor parameters.

How to cite: Frolov V.Y., Zhiligotov R.I. Development of sensorless vector control system for permanent magnet synchronous motor in Matlab Simulink // Journal of Mining Institute. 2018. Vol. 229 . p. 92-97. DOI: 10.25515/PMI.2018.1.92
Electromechanics and mechanical engineering
  • Date submitted
    2014-10-01
  • Date accepted
    2014-12-11
  • Date published
    2015-08-25

Method of diagnostics of diesel engines in timing of the operating cycle

Article preview

To maintain diesel engines in working condition there have been developed methods of diagnosing local crankshaft rotation developed by each cylinder. Inoperative cylinder has an angular velocity of rotation that does not respond the technical conditions. The measuring and computing complex consisting of personal computers, diagnostic complex «MotoDoc III», software and a set of sensors was developed for measuring. The results of the measurement and analysis of time parameters are displayed on the monitor screen. The software facilitates the recording of a signal, its processing and storage, as well as the ability to display the results. The method of diagnosis involves a number of stages: preparation of a diesel engine and equipment, the holding of general and local diagnosis, diagnosing. Thus, it appears possible to carry out condition monitoring of diesel engines by CIP method.

How to cite: Afanasev A.S., Tretyakova A.A. Method of diagnostics of diesel engines in timing of the operating cycle // Journal of Mining Institute. 2015. Vol. 214 . p. 51-56.