-
Date submitted2024-04-22
-
Date accepted2024-06-13
-
Date published2024-07-04
Comprehensive utilization of urban wastewater sludge with production of technogenic soil
The article presents the analysis of the existing approach to wastewater sludge treatment and justifies the selection of the most promising management technology that allows maximum use of wastewater sludge resource po-tential. To obtain a useful product (biocompost) suitable for use as part of technogenic soil, experimental studies of aerobic stabilization of organic matter of dehydrated urban wastewater sludge with the addition of other waste by using passive composting technology were carried out. The technology is included in the list of best available technologies (BAT). The selection of the most optimal components for the mixture was based on the results of determining the C and N content, humidity and pH of the components used that ensured the composting of organic waste. The results of laboratory studies of the obtained biocompost according to the main agrochemical and sanitary-epidemiological indicators are presented. Testing was carried out according to the criterion of toxicity of the biocompost’s aqueous extract. The assessment of the technogenic soil was performed when using biocompost in its composition for compliance with existing hygienic requirements for soil quality in the Russian Federation. Based on the results of the vegetation experiment, optimal formulations of the technogenic soil were determined, i.e., the ratio of biocompost and sand, under which the most favorable conditions for plant growth are observed according to a combination of factors such as the number of germinated seeds, the maximum height of plants and the amount of biomass. The conducted research makes it possible to increase the proportion of recycled urban wastewater sludge in the future to obtain soils characterized by a high degree of nutrient availability for plants and potentially suitable for use in landscaping, the biological stage of reclamation of technogenically disturbed lands, as well as for growing herbaceous plants in open and protected soil.
-
Date submitted2021-05-19
-
Date accepted2022-04-07
-
Date published2022-04-29
On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs
The paper analyses features of the species composition and diversity of biotic communities living within the ferromanganese nodule fields (the Clarion-Clipperton field), cobalt-manganese crusts (the Magellan Seamounts) and deep-sea polymetallic sulphides (the Ashadze-1, Ashadze-2, Logatchev and Krasnov fields) in the Russian exploration areas of the Pacific and Atlantic Oceans. Prospects of mining solid minerals of the world’s oceans with the least possible damage to the marine ecosystems are considered that cover formation of the sediment plumes and roiling of significant volumes of water as a result of collecting the minerals as well as conservation of the hydrothermal fauna and microbiota, including in the impact zone of high temperature hydrothermal vents. Different concepts and layout options for deep-water mining complexes (the Indian and Japanese concepts as well as those of the Nautilus Minerals and Saint Petersburg Mining University) are examined with respect to their operational efficiency. The main types of mechanisms that are part of the complexes are identified and assessed based on the defined priorities that include the ecological aspect, i.e. the impact on the seabed environment; manufacturing and operating costs; and specific energy consumption, i.e. the technical and economic indicators. The presented morphological analysis gave grounds to justify the layout of a deep-sea minerals collecting unit, i.e. a device with suction chambers and a grip arm walking gear, selected based on the environmental key priority. Pilot experimental studies of physical and mechanical properties of cobalt-manganese crust samples were performed through application of bilateral axial force using spherical balls (indenters) and producing a rock strength passport to assess further results of the experimental studies. Experimental destructive tests of the cobalt-manganese crust by impact and cutting were carried out to determine the impact load and axial cutting force required for implementation of the collecting system that uses a clamshell-type effector with a built-in impactor.
-
Date submitted2019-09-29
-
Date accepted2020-02-24
-
Date published2020-04-24
Vs sustainable development: scenarios for the future
Issues of sustainable development began to concern mankind starting from the 20th century, when mass industrialization and the depletion of natural resource potential contributed to the formulation of environmental issues at one of the leading places in scientific discourse. However, what if the goals of sustainable development would not be achieved to 2030? What other way we can identify for humanity to survive? So, the study is about the problems of studying the understanding of the term “sustainable development”, considering the evolution of the formation of the concept of sustainable development and analyzing the modern goals of sustainable development for attainability. From an analysis of domestic and foreign experience, possible scenarios of the development of mankind are identified (such as 1. Creating an environmental framework, 2. Implementation of sustainable nature management practices in the conditions of natural and man-made objects, 3. Implementation of “geoengineering projects”, 4. Construction of autonomous ecosystems, 5. Space exploration in search of a new planet for life, provided that the goals of sustainable development would not be achieved. It has been established that today probability of achieving all the sustainable development goals by 2030 is too small, and the indicated scenarios require, firstly, the development of science and technology, and secondly, a competent assessment of the value of nature and solving the issue of specifying property rights for natural goods.
-
Date submitted2020-01-10
-
Date accepted2020-01-14
-
Date published2020-02-25
Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg
Soils and plants of Saint Petersburg are under the constant technogenic stress caused by human activity in industrial, residential, and recreational landscapes of the city. To assess the transformed landscapes of various functional zones, we studied utility, housing, and park districts with a total area of over 7,000 hectares in the southern part of the city during the summer seasons of 2016-2018. Throughout the fieldwork period, 796 individual pairs of soil and plant samples were collected.A complex of consequent laboratory studies performed in an accredited laboratory allowed the characterization of key biogeochemical patterns of urban regolith specimens and herbage samples of various grasses. Chemical analyses provided information on the concentrations of polluting metals in soils and plants of different land use zones.Data interpretation and calculation of element accumulation factors revealed areas with the most unfavorable environmental conditions. We believe that a high pollution level in southern city districts has led to a significant degree of physical, chemical, and biological degradation of the soil and vegetation cover. As of today, approximately 10 % of the Technosols in the study area have completely lost the ability to biological self-revitalization, which results in ecosystem malfunction and the urgent need for land remediation.