Submit an Article
Become a reviewer
JOURNAL IMPACT FACTOR
2.4
WEB OF SCIENCE (ESCI)
citescore
7.5
scopus

Vol 1 No 5

Previous
Vol 1 No 4
Vol 1 No 5
  • Vol 271
  • Vol 270
  • Vol 269
  • Vol 268
  • Vol 267
  • Vol 266
  • Vol 265
  • Vol 264
  • Vol 263
  • Vol 262
  • Vol 261
  • Vol 260
  • Vol 259
  • Vol 258
  • Vol 257
  • Vol 256
  • Vol 255
  • Vol 254
  • Vol 253
  • Vol 252
  • Vol 251
  • Vol 250
  • Vol 249
  • Vol 248
  • Vol 247
  • Vol 246
  • Vol 245
  • Vol 244
  • Vol 243
  • Vol 242
  • Vol 241
  • Vol 240
  • Vol 239
  • Vol 238
  • Vol 237
  • Vol 236
  • Vol 235
  • Vol 234
  • Vol 233
  • Vol 232
  • Vol 231
  • Vol 230
  • Vol 229
  • Vol 228
  • Vol 227
  • Vol 226
  • Vol 225
  • Vol 224
  • Vol 223
  • Vol 222
  • Vol 221
  • Vol 220
  • Vol 219
  • Vol 218
  • Vol 217
  • Vol 216
  • Vol 215
  • Vol 214
  • Vol 213
  • Vol 212
  • Vol 211
  • Vol 210
  • Vol 209
  • Vol 208
  • Vol 207
  • Vol 206
  • Vol 205
  • Vol 204
  • Vol 203
  • Vol 202
  • Vol 201
  • Vol 200
  • Vol 199
  • Vol 198
  • Vol 197
  • Vol 196
  • Vol 195
  • Vol 194
  • Vol 193
  • Vol 191
  • Vol 190
  • Vol 192
  • Vol 189
  • Vol 188
  • Vol 187
  • Vol 185
  • Vol 186
  • Vol 184
  • Vol 183
  • Vol 182
  • Vol 181
  • Vol 180
  • Vol 179
  • Vol 178
  • Vol 177
  • Vol 176
  • Vol 174
  • Vol 175
  • Vol 173
  • Vol 172
  • Vol 171
  • Vol 170 No 2
  • Vol 170 No 1
  • Vol 169
  • Vol 168
  • Vol 167 No 2
  • Vol 167 No 1
  • Vol 166
  • Vol 165
  • Vol 164
  • Vol 163
  • Vol 162
  • Vol 161
  • Vol 160 No 2
  • Vol 160 No 1
  • Vol 159 No 2
  • Vol 159 No 1
  • Vol 158
  • Vol 157
  • Vol 156
  • Vol 155 No 2
  • Vol 154
  • Vol 153
  • Vol 155 No 1
  • Vol 152
  • Vol 151
  • Vol 150 No 2
  • Vol 150 No 1
  • Vol 149
  • Vol 147
  • Vol 146
  • Vol 148 No 2
  • Vol 148 No 1
  • Vol 145
  • Vol 144
  • Vol 143
  • Vol 140
  • Vol 142
  • Vol 141
  • Vol 139
  • Vol 138
  • Vol 137
  • Vol 136
  • Vol 135
  • Vol 124
  • Vol 130
  • Vol 134
  • Vol 133
  • Vol 132
  • Vol 131
  • Vol 129
  • Vol 128
  • Vol 127
  • Vol 125
  • Vol 126
  • Vol 123
  • Vol 122
  • Vol 121
  • Vol 120
  • Vol 118
  • Vol 119
  • Vol 116
  • Vol 117
  • Vol 115
  • Vol 113
  • Vol 114
  • Vol 112
  • Vol 111
  • Vol 110
  • Vol 107
  • Vol 108
  • Vol 109
  • Vol 105
  • Vol 106
  • Vol 103
  • Vol 104
  • Vol 102
  • Vol 99
  • Vol 101
  • Vol 100
  • Vol 98
  • Vol 97
  • Vol 95
  • Vol 93
  • Vol 94
  • Vol 91
  • Vol 92
  • Vol 85
  • Vol 89
  • Vol 87
  • Vol 86
  • Vol 88
  • Vol 90
  • Vol 83
  • Vol 82
  • Vol 80
  • Vol 84
  • Vol 81
  • Vol 79
  • Vol 78
  • Vol 77
  • Vol 76
  • Vol 75
  • Vol 73 No 2
  • Vol 74 No 2
  • Vol 72 No 2
  • Vol 71 No 2
  • Vol 70 No 2
  • Vol 69 No 2
  • Vol 70 No 1
  • Vol 56 No 3
  • Vol 55 No 3
  • Vol 68 No 2
  • Vol 69 No 1
  • Vol 68 No 1
  • Vol 67 No 1
  • Vol 52 No 3
  • Vol 67 No 2
  • Vol 66 No 2
  • Vol 64 No 2
  • Vol 64 No 1
  • Vol 54 No 3
  • Vol 65 No 2
  • Vol 66 No 1
  • Vol 65 No 1
  • Vol 53 No 3
  • Vol 63 No 1
  • Vol 61 No 1
  • Vol 62 No 1
  • Vol 63 No 2
  • Vol 62 No 2
  • Vol 61 No 2
  • Vol 59 No 2
  • Vol 60 No 2
  • Vol 51 No 3
  • Vol 60 No 1
  • Vol 49 No 3
  • Vol 50 No 3
  • Vol 59 No 1
  • Vol 57 No 2
  • Vol 58 No 2
  • Vol 58 No 1
  • Vol 56 No 2
  • Vol 57 No 1
  • Vol 55 No 2
  • Vol 48 No 3
  • Vol 56 No 1
  • Vol 47 No 3
  • Vol 55 No 1
  • Vol 54 No 2
  • Vol 53 No 2
  • Vol 54 No 1
  • Vol 52 No 2
  • Vol 46 No 3
  • Vol 53 No 1
  • Vol 52 No 1
  • Vol 51 No 2
  • Vol 51 No 1
  • Vol 50 No 2
  • Vol 49 No 2
  • Vol 48 No 2
  • Vol 50 No 1
  • Vol 49 No 1
  • Vol 45 No 3
  • Vol 47 No 2
  • Vol 44 No 3
  • Vol 43 No 3
  • Vol 42 No 3
  • Vol 48 No 1
  • Vol 46 No 2
  • Vol 45 No 2
  • Vol 46 No 1
  • Vol 47 No 1
  • Vol 44 No 2
  • Vol 43 No 2
  • Vol 41 No 3
  • Vol 42 No 2
  • Vol 39 No 3
  • Vol 37 No 3
  • Vol 45 No 1
  • Vol 41 No 2
  • Vol 39 No 2
  • Vol 44 No 1
  • Vol 38 No 2
  • Vol 37 No 2
  • Vol 38 No 3
  • Vol 43 No 1
  • Vol 42 No 1
  • Vol 41 No 1
  • Vol 40
  • Vol 39 No 1
  • Vol 36 No 2
  • Vol 35 No 2
  • Vol 38 No 1
  • Vol 35 No 3
  • Vol 34 No 2
  • Vol 34 No 3
  • Vol 33 No 2
  • Vol 36 No 1
  • Vol 37 No 1
  • Vol 36 No 3
  • Vol 35 No 1
  • Vol 34 No 1
  • Vol 32 No 3
  • Vol 33 No 3
  • Vol 32 No 2
  • Vol 33 No 1
  • Vol 31
  • Vol 30 No 3
  • Vol 30 No 2
  • Vol 30 No 1
  • Vol 32 No 1
  • Vol 29 No 3
  • Vol 29 No 1
  • Vol 29 No 2
  • Vol 28
  • Vol 27 No 1
  • Vol 27 No 2
  • Vol 26 No 2
  • Vol 26 No 1
  • Vol 25 No 2
  • Vol 25 No 1
  • Vol 23
  • Vol 24
  • Vol 15 No 16
  • Vol 22
  • Vol 20
  • Vol 17 No 18
  • Vol 21
  • Vol 19
  • Vol 13 No 3
  • Vol 14
  • Vol 13 No 2
  • Vol 12 No 3
  • Vol 12 No 2
  • Vol 13 No 1
  • Vol 12 No 1
  • Vol 11 No 3
  • Vol 11 No 2
  • Vol 10 No 3
  • Vol 10 No 2
  • Vol 11 No 1
  • Vol 9 No 2
  • Vol 10 No 1
  • Vol 9 No 1
  • Vol 8
  • Vol 7 No 3
  • Vol 7 No 2
  • Vol 7 No 1
  • Vol 6 No 2
  • Vol 6 No 1
  • Vol 5 No 4-5
  • Vol 5 No 2-3
  • Vol 5 No 1
  • Vol 4 No 5
  • Vol 4 No 4
  • Vol 4 No 3
  • Vol 4 No 2
  • Vol 3
  • Vol 4 No 1
  • Vol 2 No 5
  • Vol 2 No 4
  • Vol 2 No 3
  • Vol 2 No 1
  • Vol 2 No 2
  • Vol 1 No 5
  • Vol 1 No 4
  • Vol 1 No 3
  • Vol 1 No 2
  • Vol 1 No 1
Articles
  • Date submitted
    1908-07-07
  • Date accepted
    1908-08-27
  • Date published
    1908-12-25

Possibility of different geometric systems with one and the same complete set of elements

Article preview

We now know that geometric systems can be very numerous and varied, since very diverse geometric images can be taken as elements of systems. To establish any such system, it is necessary to determine the complete set of its elements and provide proof that from two elements arbitrarily taken from it it is possible to unambiguously compose an infinite set of them such that, by replacing the two taken in it with two arbitrary other elements included in its composition, we from them they would also unambiguously deduce the same set, which would constitute the linear principle of the system.

How to cite: Fedorov Y.S. Possibility of different geometric systems with one and the same complete set of elements // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 319-321.
Articles
  • Date submitted
    1908-07-02
  • Date accepted
    1908-08-26
  • Date published
    1908-12-25

The existence of a limitless variety of geometric systems

Article preview

The author concludes that there is an unlimited number of geometric systems of the same level, deduced from each given one. Since the conclusion about the possibility of reproducing from any given system another, twin one, is not limited by any conditions and is determined by the possibility of the same positional constructions as for all systems, it is clear that it is equally applicable to twin systems. In other words, we can reproduce a new, twin system not only from any geometric systems in general, but on absolutely the same grounds and from each twin system.

How to cite: Fedorov Y.S. The existence of a limitless variety of geometric systems // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 322-342.
Articles
  • Date submitted
    1908-07-06
  • Date accepted
    1908-09-10
  • Date published
    1908-12-25

Essay on the iron ore deposits of the western part of central Russia and the Kingdom of Poland

Article preview

The brown and spar iron ores of central Russia and the Kingdom of Poland are of, in addition to scientific, enormous practical interest, since they are almost the only iron ores in these two regions, which, due to their geographical location and other conditions, have all the data for a large iron industry developed here. The author describes ores in the following provinces: Tver province, Kaluga province, Oryol province (list of literature 1837 - 1902), Kursk province, Kingdom of Poland (literature from 1816 to 1903). The following is a description of the age and origin of the ores of the western part of Central Russia (provinces: Tula, Kaluga, Oryol, and Kursk).

How to cite: Charnotsky S.I. Essay on the iron ore deposits of the western part of central Russia and the Kingdom of Poland // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 343-372.
Articles
  • Date submitted
    1908-07-02
  • Date accepted
    1908-09-20
  • Date published
    1908-12-25

Determination of the magnitude of birefringence

Article preview

The following issues are considered in the work: 1. Determination of the value of birefringence from readings with forward and reverse parallel positions of the compensator and the grain under study. 2. The degree of sensitivity of the rotating compensator, the Siedentopf compensator and the quartz and Fedorov mica compensators.

How to cite: Nikitin V.V. Determination of the magnitude of birefringence // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 373-391.
Articles
  • Date submitted
    1908-07-19
  • Date accepted
    1908-09-03
  • Date published
    1908-12-25

Следы проявления триклинной сингонии в ортоклазе

Article preview

Among the remarkable examples of potassium feldspar in the Museum of the Mining Institute there is a very large adularia quadruple from St. Gotthard (Fibia), reproduced in Fig. 1 of the attached table (up to two decimeters in length).

How to cite: Fedorov Y.S. // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 392-394.
Articles
  • Date submitted
    1908-07-03
  • Date accepted
    1908-09-22
  • Date published
    1908-12-25

On the question of the origin of twinning stripes in microcline

Article preview

The author came across clear signs (Fig. 3) of the formation of stripes in the microcline in thin section from the shores of the White Sea (No. 8, that is, from Gorely Island in the Keretsky roadstead). I felt obliged to present such an image, perfectly clear at 120x magnification.

How to cite: Fedorov Y.S. On the question of the origin of twinning stripes in microcline // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 394.
Articles
  • Date submitted
    1908-07-23
  • Date accepted
    1908-09-18
  • Date published
    1908-12-25

Linear primacy of curved surfaces of the 2nd order (conoseconds), determined by one of them and the plane

Article preview

Since the plane P is only a special case of a curved surface of the 2nd order (conosecond) K, then from this and some other conosecond, given completely arbitrarily, their linear primacy is quite unambiguously determined. Such will be the aggregate for the determination of which these data are sufficient and can be replaced by any two conoseconds of the same aggregate.

How to cite: Fedorov Y.S. Linear primacy of curved surfaces of the 2nd order (conoseconds), determined by one of them and the plane // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 394-396.
Articles
  • Date submitted
    1908-07-22
  • Date accepted
    1908-08-30
  • Date published
    1908-12-25

Shift of ordinary and polar lattices

Article preview

Correlativity is established not only between a system of points and a system of planes, but also between transformations of these systems. It is precisely because of correlativity that this theorem has a dual meaning, so that in its formulation an ordinary lattice can be replaced by a polar one and vice versa. The author considers it necessary to publish this theorem in view of the fact that in crystallography, to determine the symbol of a complex, we precisely perform the operation of shifting the polar lattice (using the gnomosteographic projection), while the essence of the change that the ordinary lattice undergoes in this case remained unknown.

How to cite: Fedorov Y.S. Shift of ordinary and polar lattices // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 396-397.
Articles
  • Date submitted
    1908-07-18
  • Date accepted
    1908-09-10
  • Date published
    1908-12-25

Experiments on crystallization between two spheres

Article preview

I began experiments of this kind back in 1901, when I cut out circles or small rings on thin sections of rock salt and alum that separated the inner convex from the outer concave spherical line; I put a drop of an unsaturated solution into this annular space and covered it with a coverslip, which I sealed with Canada balsam.

How to cite: Fedorov Y.S. Experiments on crystallization between two spheres // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 397-399.
Geology
  • Date submitted
    1908-06-29
  • Date accepted
    1908-08-30
  • Date published
    1908-12-25

Crystallization of a ball from K2Cr2O7

Article preview

Experiments on the crystallization of a hemisphere with a diameter of 5 mm, prepared from a K2Cr2O7 crystal with a central plane (100), were generally carried out in exactly the same way as in the crystallization of hemispheres cut from sodium chloride, aluminum, and chrome alum.

How to cite: Artemyev D.N. Crystallization of a ball from K2Cr2O7 // Journal of Mining Institute. 1908. Vol. 1 № 5. p. 399-400.