Submit an Article
Become a reviewer
Vol 204
Pages:
46
Download volume:
RUS

The isolation of landslide-prone territory using the neural network method

Authors:
A. A. Kuzin
About authors
  • National Mineral Resources University (Mining University)
Date submitted:
2012-11-30
Date accepted:
2013-01-09
Date published:
2013-05-01

Abstract

The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results  and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.

Go to volume 204

References

  1. Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
  2. Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
  3. Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.

Similar articles

Influence of changes in constructive elements of protective constructions on behavior of the soil massif near deep ditches
2013 D. A. Potemkin
Information system of town planning activities based on PTC SOTO
2013 M. E. Skachkova
Modelling of process of liquidation of underground emptinesses in the conditions of technogenic activation
2013 A. A. Shubin
Characteristics of the strain-stress distribution of the quarry face with different curve
2013 M. G. Mustafin, A. V. Panchenko
Experience evaluation of land in germany
2013 E. N. Bykova
The method of the geometric addition of forces over the most stressed slip surface in estimation of open-pit slope stability
2013 A. M. Mochalov, A. A. Pavlovich, V. A. Kubarev