The isolation of landslide-prone territory using the neural network method
Authors:
About authors
- National Mineral Resources University (Mining University)
Abstract
The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.
References
- Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
- Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
- Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.
Similar articles
Application of automated software system «PRESS 3D URAL» for predicting bump hazard zones parameters and discharge borehole well in advance of the ore deposit and pillars in difficult geomechanical conditions
2013 D. V. Sidorov
Cadastral valuation methods of specially protected natural areas based conservation value of forest ecosystems
2013 M. V. Neshataev
Influence percentage value common land on a property on market value of land gardening noncommercial organizations Leningrad’s region
2013 P. M. Demidova, V. G. Gorelikov
Recommendations on the content and periodicity of geodetic control of the crane tracks electric bridge crane
2013 V. G. Potyukhlyaev, G. I. Khudyakov