Submit an Article
Become a reviewer
Vol 204
Pages:
46
Download volume:
RUS

The isolation of landslide-prone territory using the neural network method

Authors:
A. A. Kuzin
About authors
  • National Mineral Resources University (Mining University)
Date submitted:
2012-11-30
Date accepted:
2013-01-09
Date published:
2013-11-18

Abstract

The method neural networks of back propagation is discussed in this paper. Parameters of the original data for zoning and structure of the neural network are defined. It shows the results  and assessments of accuracy landslide areas identification within Krasnaya Polyana. Proposal on the use of digital elevation models produced with high-precision geodetic techniques to improve the reliability of the simulation results is made.

Go to volume 204

References

  1. Рассел С. Искусственный интеллект: современный подход / С.Рассел, П.Норвиг. М.: ООО «И.Д.Вильямс», 2006. 1424 с.
  2. Хайкин С. Нейронные сети: полный курс: Пер. с англ. М.: ООО «И.Д.Вильямс», 2006. 1104 с.
  3. Pradhan B. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling / B.Pradhan, S.Lee. // Environmental Modelling & Software, 2010. Р.747-759.

Similar articles

Metrological control administered surveying work
2013 V. A. Golovanov
Theoretical basis of geomaterial accounted for induced and inherent anisotropy
2013 M. A. Karasev
Characteristics of the strain-stress distribution of the quarry face with different curve
2013 M. G. Mustafin, A. V. Panchenko
Limitations management of land resources is based on information support for state real estate cadastre
2013 V. A. Kiselev, A. G. Shabaev
Influence percentage value common land on a property on market value of land gardening noncommercial organizations Leningrad’s region
2013 P. M. Demidova, V. G. Gorelikov
Use of affinne coordinate conversion at the local geodetic surveys with applying of GPS-receivers
2013 G. I. Khudyakov, G. V. Makarov