DIRECT METHODS FOR SOLVING THE VARIATION PROBLEM FOR MULTICRITERIA ESTIMATION OF THE BEARING CAPACITY OF GEOMATERIALS
- Saint-Petersburg Mining University
Abstract
The article deals with direct methods for solving the variational problem in stresses for multicriteria estimation of the bearing capacity of a geomaterial sample in the current configuration, which can be both reference (undeformed) and actual (deformed). The problem is to minimize the integral quadratic functional from the various stress components in the selected control subdomain on a set of stress fields statically balanced with external influences. For the simplest configurations of the sample, it is proposed to use the method of generalized Fourier series in Hilbert spaces. For complex configurations of a sample with stress concentrators, it is suggested to use finite element approximation with the subsequent minimization of a finite-dimensional quadratic function with linear constraints of equalities. A substantial numerical example is given for estimating the bearing capacity of a sample from a geomaterial under pure compression.
References
- Бригаднов И.А. Многокритериальная оценка несущей способности геоматериалов // Записки Горного института. 2016. Т. 218. С. 289-295.
- Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.
- Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.
- Пальмов В.А. Элементы тензорной алгебры и тензорного анализа. СПб: Изд-во Политех. ун-та, 2008. 109 с.
- Поздеев А.А. Большие упруго-пластические деформации / А.А.Поздеев, П.В.Трусов, Ю.И.Няшин. М.: Наука, 1986. 232 с.
- Сеа Ж. Оптимизация. Теория и алгоритмы. М.: Мир, 1973. 244 с.
- Сукнев С.В. Применение нелокальных и градиентных критериев для оценки разрушения геоматериалов в зонах концентрации растягивающих напряжений // Физическая мезомеханика. 2001. Т. 14(2). С. 67-75.
- Сьярле Ф. Метод конечных элементов для эллиптических задач. М.: Мир, 1980. 512 с.
- Сьярле Ф. Математическая теория упругости. М.: Мир, 1992. 472 с.
- Треногин В.А. Функциональный анализ. М.: Наука, 1980. 496 с.
- Черепанов Г.П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с.
- Brigadnov I.A. Regularization of non-convex strain energy function for non-monotonic stress-strain relation in the Hencky elastic-plastic model // Acta Mechanica. 2015. Vol. 226. Iss.8. P.2681-2691.
- Verruijt A. Computational geomechanics. Dordrecht: Springer Science+Business Media, B.V., 1995. 384 p.