Submit an Article
Become a reviewer
Vol 228
Pages:
722
Download volume:
RUS ENG

Influence of dispersing additives and blend composition on stability of marine high-viscosity fuels

Authors:
T. N. Mitusova1
N. K. Kondrasheva2
M. M. Lobashova3
M. A. Ershov4
V. A. Rudko5
About authors
  • 1 — All-Russian Scientific Research Institute for Oil Refining
  • 2 — Saint-Petersburg Mining University
  • 3 — All-Russian Scientific Research Institute for Oil Refining
  • 4 — All-Russian Scientific Research Institute for Oil Refining
  • 5 — Saint-Petersburg Mining University
Date submitted:
2017-06-30
Date accepted:
2017-09-09
Date published:
2017-12-25

Abstract

The article offers a definition of the stability of marine high-viscosity fuel from the point of view of the colloid-chemical concept of oil dispersed systems. The necessity and importance of the inclusion in the current regulatory requirements of this quality parameter of high-viscosity marine fuel is indicated. The objects of the research are high-viscosity marine fuels, the basic components of which are heavy oil residues: fuel oil that is the atmospheric residue of oil refining and viscosity breaking residue that is the product of light thermal cracking of fuel oil. As a thinning agent or distillate component, a light gas oil was taken from the catalytic cracking unit. The stability of the obtained samples was determined through the xylene equivalent index, which characterizes the stability of marine high-viscosity fuel to lamination during storage, transportation and operation processes. To improve performance, the resulting base compositions of high-viscosity marine fuels were modified by introducing small concentrations (0.05 % by weight) of stabilizing additives based on oxyethylated amines of domestic origin and alkyl naphthalenes of foreign origin.

10.25515/pmi.2017.6.722
Go to volume 228

References

  1. Альфар Г. Топлива. Производство, применение, свойства: Справочник. Пер. с англ. / Г.Альфар, Б.Элверс; Под. ред. Т.Н. Митусовой. СПб: Профессия, 2012. 413 с.
  2. Castañeda L.C. Combined process schemes for upgrading of heavy petroleum / L.C.Castañeda, J.A.D.Muñoz, J.Ancheyta // Fuel. 2012. Vol. 100. P. 110-127. DOI: 10.1016/j.fuel.2012.02.022.
  3. Gawrys K.L. The role of asphaltene solubility and chemical composition on asphaltene aggregation / K.L.Gawrys, P. Matthew Spiecker, P.K. Kilpatrick // Petroleum science and technology. 2003. Vol.21. № 3-4. P. 461-489. DOI: 10.1081/LFT-120018533.
  4. Effect of Hydrocarbon Composition on Quality and Operating Characteristics of Middle Distillate Fractions and Low-Viscosity Marine Fuels / N.K.Kondrasheva, D.O.Kondrashev, V.A.Rudko, A.A.Shaidulina // Chemistry and Technology of Fuels and Oils. 2017. Vol. 53. P. 163-172. DOI: 10.1007/s10553-017-0792-8.
  5. Kondrasheva N.K. Modern hydroprocesses for the synthesis of high-quality low-viscous marine fuels / N.K.Kondrasheva, D.O.Kondrashev // Catalysis in Industry. 2017. Vol. 9. №. 1. P. 1-9. DOI: 10.1134/S207005041701007X.
  6. Laux H. Theoretical and practical approach to the selection of asphaltene dispersing agents / H.Laux, I.Rahimian, T.Butz // Fuel Processing Technology. 2000. Vol. 67. № 1. P. 79-89. DOI: 10.1016/S0378-3820(00)00087-4.
  7. Murzakov R.M. Influence of petroleum resins on colloidal stability of asphaltene-containing disperse systems / R.M.Murzakov, S.A.Sabanenkov, Z.I.Syunyaev // Chemistry and Technology of Fuels and Oils. 1980. Vol.16. N. 10. P. 674-677. DOI: 10.1007/BF00726261.
  8. Nikooyeh K. Interactions between Athabasca pentane asphaltenes and n-alkanes at low concentrations / K.Nikooyeh, S.R.Bagheri, J.M.Shaw // Energy & Fuels. 2012. Vol. 26. № 3. P. 1756-1766. DOI: 10.1021/ef201845a.
  9. Patent № 8987537 US. Fuel compositions / D.F.Droubi, M.A.Branch, C.Delaney-Kinsella, D.T.Lipinsky, L.S.Kraus T.L.Brumfield, A.Bru, K.Steernberg, P.Tardif, S.Boudreaux. Opubl. 24.03.2015.
  10. Patent № 14/943313 US. Low sulfur marine bunker fuels and methods of making same / C.E.Robinson, S.Dawe, E.Karlsson , H.Grati. Opubl. 09.06.2015.
  11. Patent № 14/932379 US. Process for the production of fuels of heavy fuel type from a heavy hydrocarbon-containing feedstock using a separation between the hydrotreatment stage and the hydrocracking stage / W.Weiss, I.Merdrignac. Opubl. 25.06.2015.
  12. Particle size distributions from heavy-duty diesel engine operated on low-sulfur marine fuel / S.Ushakov, H.Valland, J.B.Nielsen, E.Hennie // Fuel processing technology. 2013. Vol. 106. P. 350-358. DOI: 10.1016/j.fuproc.2012.08.022.
  13. Zamiatina N. Comparative overview of marine fuel quality on diesel engine operation // Procedia Engineering. 2016. Vol. 134. P. 157-164. DOI: 10.1016/j.proeng.2016.01.055.

Similar articles

Experience of development of porphyry copper type deposits in the Urals
2017 I. A. Altushkin, V. V. Levin, A. V. Sizikov, Yu. A. Korol
Quality improvement of mining specialists tarining on the basis of cooperation between Saint-Petersburg mining university and Orica company
2017 M. N. Overchenko, M. A. Marinin, S. P. Mozer
Research of hard-to-recovery and unconventional oil-bearing formations according to the principle «in-situ reservoir fabric»
2017 A. D. Alekseev, V. V. Zhukov, K. V. Strizhnev, S. A. Cherevko
Enhancement of organizational and technical solutions regarding anchoring of completed construction facilities of underground railway system to operating control
2017 E. G. Kozin
Pedagogical experiment of the first rector of the Ural state mining institute P.P. Von Weymarn as an effort to reform the higher education institution in 1917-1920
2017 N. G. Valiev, A. G. Shorin
Sustainable development of crude ore resources and benefication facilities of JSC «Apatit» based on best engineering solutions
2017 A. A. Gurev