В результате проведенного изотопно-геохимического исследования циркона из гранитов Белокурихинского массива в Горном Алтае U-Pb методом впервые определен возраст трех фаз внедрения: возраст первой фазы относится к временному интервалу 255-250 млн лет, второй и третьей фазы имеют сближенный возраст около 250 млн лет. Продолжительность формирования Белокурихинского массива возможно оценить, как не превышающую 5-8 млн лет. Величина δ18О для циркона из гранитов второй и третьей фаз внедрения составляет в среднем 11,5-12,0 ‰, что свидетельствует о существенном вкладе коровой компоненты при формировании материнских расплавов для гранитов этих фаз. Значения температуры кристаллизации циркона по Ti-в-цирконе термометру для трех фаз укладываются в интервал 820-800 °С. Р-Т параметры кристаллизации титанита из первой фазы, определенные по титанитовому термобарометру, составляют в среднем 770 °С и 2,7 кбар. Циркон из первой фазы в большей степени имеет геохимические характеристики типичного магматического циркона. Циркон из второй и третьей фаз может быть как неизмененный магматический, так и обогащенный несовместимыми элементами (LREE, Th, U, Ti, Ca и др.) в результате флюидного воздействия, соответствующий по своим геохимическим характеристикам циркону гидротермально-метасоматического типа. Ряд зерен циркона из второй и третьей фаз гранитов демонстрирует аномальные геохимические характеристики – нетипичные для циркона спектры распределения REE (в том числе, спектры типа «крыльев птицы» со встречным наклоном профилей распределения легких и тяжелых REE), максимально высокое, по сравнению с другими разновидностями, содержание ряда элементов-примесей. Такой обогащенный состав циркона и широкие вариации в содержании несовместимых элементов обусловлен неравновесными условиями кристаллизации циркона и эволюцией состава флюидонасыщенного расплава на заключительных этапах формирования массива.
Проведено исследование редкоэлементного состава разновидностей берилла (469 анализов методом SIMS). Красные бериллы выделяются повышенным содержанием Ni, Sc, Mn, Fe, Ti, Cs, Rb, K, B и пониженным Na и воды. Розовые бериллы отличаются повышенным содержанием Cs, Rb, Na, Li, Cl и воды при пониженном Mg и Fe. Зеленые бериллы характеризуются повышенным содержанием Cr, V, Mg, Na и воды при пониженном Cs. Особенностью желтых бериллов является пониженное содержание Mg, Cs, Rb, K, Na, Li и Cl. Для бериллов различных оттенков голубого и синего цвета (аквамаринов) характерно повышенное содержание Fe и пониженное Cs и Rb. Для белых бериллов установлено повышенное содержание Na и Li. Метод главных компонент (PCA) c CLR-преобразованием показал, что по первому компоненту происходит обособление зеленых бериллов от других разновидностей. По второму компоненту обособляются розовые и красные бериллы. Метод стохастического вложения соседей с t-распределением (t-SNE) с CLR-преобразованием данных продемонстрировал контрастность составов зеленых бериллов относительно других разновидностей. Красные и розовые бериллы образуют самые компактные кластеры.
В предлагаемом читателям специальном геологическом выпуске Записок Горного института собраны статьи, рассматривающие проблемы отечественной геологической науки и воспроизводства минерально-сырьевых ресурсов страны.
В статье представлены оригинальные данные по химическому составу толеитовых базальтоидов и андезитов, драгированных из хребта Шака (Южная Атлантика) в ходе экспедиционных исследований весной 2016 г. на научно-экспедиционном судне «Академик Федоров». Аналитическая часть работы по определению содержаний петрогенных, редких и редкоземельных элементов выполнялась при помощи классического метода («мокрой химии»), рентгеноспектрального флуоресцентного анализа (РФА) и ICP-MS. Изучаемые образцы демонстрируют повышенные концентрации крупноионных литофильных элементов LILE (Ba, Rb, Pb) и легких редкоземельных элементов LREE (La, Ce, Nd, Sm) относительно высокозарядных HFSE (Nb, Ta) и тяжелых редкоземельных элементов HREE (Dy, Yb, Lu). Особенности геохимии редких элементов предполагают значительный вклад корового или субдукционного компонентов в магмы хребта Шака. Дискриминационные диаграммы для базальтоидов и близких к ним пород с полями различных геодинамических обстановок свидетельствуют о том, что они образовывались в обстановке срединно-океанического хребта MORB. Причина появления в породах субдукционных и коровых меток, возможно, связана с процессами ассимиляции магмами корового вещества или заключается в их унаследовании от мантийного источника.
В настоящей работе приводится комплексная минералого-геохимическая характеристика (SEM-EDS, ICP-MS методы) пород фальбанд проявления Кив-губа-Картеш в Беломорском подвижном поясе (БПП). Термин «фальбанд» впервые появился в серебряных шахтах Конгсберга в XVII в. Сейчас фальбанды – это прослои или линзы с сульфидной вкрапленностью, располагающиеся во вмещающей, как правило, метаморфической породе. Содержание сульфидов в породе должно быть таким, чтобы, с одной стороны, их нельзя было назвать акцессорными минералами, а с другой – чтобы они не формировали массивные руды. Фальбанды выветриваются иначе, чем вмещающие породы, поэтому их легко отличить в обнажениях благодаря ржаво-коричневому цвету. Исследуемые породы являются амфиболитами, отличающимися друг от друга содержанием граната и степенью окварцевания. Рудная минерализация представлена в основном пирротином и пиритом, причем зерна пирротина часто замещаются по периферии окислами и гидроокислами железа, а на них в свою очередь нарастает пирит. В то же время в породе присутствуют практически неизмененные зерна пирротина неправильной формы с тонкими структурами распада, сложенными пентландитом, и отдельные зерна пирита с повышенным содержанием никеля (до 5,4 мас. %). Относительно распространенным минералом является халькопирит, образующий мелкие зерна, нередко захваченные пирротином. Также были обнаружены единичные зерна соболевскита и хедлейита субмикронного размера. По результатам исследования редкоземельного состава пород фальбанд предполагается их генетическая связь с метабазальтами архейского возраста Серякской и Лоухско-Пиземской структур БПП, а не с метагабброидами и метаультрабазитами, распространенными в районе исследования.
В работе представлены результаты изучения пород вулканокластических фаций лампроитовой трубки Мрия, Приазовский блок Украинского щита. В них был обнаружен комплекс экзотических минеральных частиц, сформированных в экстремально-восстановительных мантийных условиях: силикатные сферулы, частицы самородных металлов и интерметаллических сплавов, бескислородные минералы, такие как алмаз, кусонгит (WC), осборнит (TiN). Цель исследований – установить генезис вулканокластических пород и развить представления о высоковосстановленной мантийной минеральной ассоциации (ВВММА), а также провести изотопно-геохимическое исследование циркона. В результате в составе тяжелой фракции выделены группы минералов, происходящие из разных источников: ВВММА может быть отнесена к ювенильной магматогенной составляющей вулканокластических пород; группа минералов и ксенолитов, которые могут быть интерпретированы как ксеногенный случайный материал, связанный с разрушением мантийных нодулей (горнблендитовые, оливинитовые и дунитовые ксенолиты), интрузивных лампроитов (амфибол ряда тремолит-роговая обманка) и кристаллических пород фундамента (циркон, роговая обманка, плагиоклаз, эпидот и ксенолиты гранитов). Изученные вулканокластические породы могут быть определены как интрузивно-пирокластические фации (туффизиты), образованные после внедрения интрузивных лампроитов. Очевидно, что компоненты ВВММА образовывались в резко восстановительных условиях при высоких температурах, которые характерны для переходной зоны между ядром и мантией. Таким образом, мы полагаем, что образование первичных металло-силикатных расплавов ВВММА связано с переходной зоной D".
В работе представлены результаты исследования состава ксенолитов мантийных перидотитов (семь образцов), отобранных в четвертичных базальтах вулкана Сверре, архипелаг Шпицберген. Присутствие двух крупных (более 15 см в диаметре) ксенолитов шпинелевых лерцолитов позволило рассмотреть изменение их состава в центральной, промежуточной и краевой частяхобразцов. Предлагается по распределению редких и редкоземельных элементов выделение трех типов ксенолитов, отличающихся по геохимическим особенностям. Обогащение мантийных перидотитов легкими редкоземельными элементами, а также высокозарядными и крупноионными литофильными элементами, предположительно связано с проявлением мантийногометасоматоза.
В результате впервые проведенного изотопно-геохимического исследования рутила из полиминерального рудопроявления Ичетъю на Среднем Тимане, выполненного локальным методом LA-ICP-MS и «классическим» методом TIMS, установлено, что поступивший из различных источников разновозрастный (предположительно с возрастом около 1000, 1660, 1860 и 1980 млн лет) рутил претерпел общее для всех его разновидностей термальное воздействие в результате процесса с возрастом около 580 млн лет. Результаты геохронологического исследования рутила согласуются с проведенным ранее U-Pb датированием циркона из проявления Ичетъю и Пижемского месторождения. Cогласно современным представлениям температура закрытия U-Pb системы в рутиле превышает 500 °С, что предполагает достаточно высокотемпературные условия гидротермальной переработки рутила при формировании рассматриваемых месторождений в рифейское время.
В работе приводятся результаты комплексного изотопно-геохимического и термобарометрического исследования плагиокристаллосланцев верхнеанабарской серии Анабарского щита. Гранулитовые комплексы древних платформ являются важнейшим объектом исследований для решения фундаментальной проблемы происхождения и состава земной коры. Особый интерес представляют ранние этапы ее становления, которым соответствуют глубоко метаморфизованные породы фундамента платформ, доступные для изучения в пределах щитов. Исследование возраста и параметров метаморфизма гранулитов на примере верхнеанабарской серии позволяет уточнить этапы становления древней коры Анабарского щита. Проведены изотопно-геохимическое (U-Pb, циркон и Sm-Nd, гранат-амфибол-WR) и термобарометрическое (Theriak-Domino) исследования плагиокристаллосланцев. В результате установлены два этапа палеопротерозойского метаморфизма на территории Анабарского щита с возрастом около 1997 и 1919 млн лет. Параметры пика гранулитового метаморфизма определены как 775 ± 35 °С и 7,5 ± 0,7 кбар, параметры регрессивного этапа – 700 °C и 7 кбар. Можно предположить последовательность метаморфических преобразований породы: высокотермальный метаморфизм гранулитовой фации (T ≤ 810 °C) и последующее субизобарическое (около 7 кбар) остывание до 700 °C с повышением активности воды и формированием Grt-Amp парагенезиса, отвечающего области перехода из гранулитовой в амфиболитовую фацию. Данные по распределению REE и редких элементов в цирконе и породообразующих минералах, полученные с помощью ионного микрозонда, в значительной мере способствуют интерпретации результатов изотопно-геохимического исследования.
В работе представлены результаты исследования (метод LA-ICP-MS) шпинели из коллекции мантийных ксенолитов лерцолитов (семь ксенолитов), отобранных в четвертичных щелочных базальтах вулкана Сверре, архипелаг Шпицберген. Исследование двух крупных (более 15 см в диаметре) ксенолитов позволило изучить изменения состава минералов в центральной, промежуточной и краевой части образцов хромдиопсидовых шпинелевых лерцолитов. Установлен синусоидальный характер распределения REE в шпинелях, свидетельствующий о проявлении мантийного метасоматоза. Впервые полученные результаты по редкоэлементному составу для шпинелей из мантийных ксенолитов в щелочных базальтах архипелага Шпицберген дополняют опубликованные в мировой литературе данные по геохимии шпинелей мантийного происхождения.
Результаты изотопно-геохимического исследования методом ступенчатого растворения PbLS касситерита из грейзенов, расположенных в массиве гранитов Логросан (Центрально-Иберийская зона, Испания), и апатита из гидротермальной кварц-апатитовой жилы в экзоконтакте массива гранитов свидетельствуют, что в обоих случаях в интервале 114-126 млн лет фиксируется гидротермальное событие, сопровождавшееся привносом свинца. В пределах ошибки определения можно говорить об одном и том же возрасте около 120 млн лет, которому отвечает кристаллизация гидротермального апатита, образование примазок и микровключений в касситерите из грейзенов и проявление Au-As-Sb-Pb рудной минерализации, что требует дальнейшего подтверждения. Ксеногенный циркон из кварц-апатитовой жилы не реагирует на это сравнительно низкотемпературное гидротермальное событие ни появлением новых генераций (оторочек, участков перекристаллизации), ни переуравновешиванием U-Pb изотопной системы. Методом PbLS по заключительным выщелокам касситерита подтвержден возраст образования грейзенов около 305 млн лет, ранее определенный 40 Ar/ 39 Ar методом по мусковиту.
В результате детального изотопно-геохимического (масс-спектрометрия вторичных ионов – SIMS, времяпролетная масс-спектрометрия – TOF) исследования циркона из рудоносных сиенитов Ястребецкого редкометалльно-редкоземельного месторождения (Украинский щит) получены доказательства магматического генезиса месторождения – для неизмененного циркона в центральной части зерна характерен магматический спектр распределения REE со значением δ 18 O несколько выше мантийного (в среднем 6,5 ‰). На заключительном этапе формирования месторождения возросла роль фтор-водосодержащих флюидов, обогащенных Y, REE, Nb, Ве и тяжелым кислородом, что нашло прямое отражение в аномальных изотопно-геохимических характеристиках кайм и зон изменения циркона (содержание Y достигает 61874 г/т, Nb – 7976 г/т, Be – 1350 г/т, δ 18 O достигает 12,42 ‰, F – 0,7 % по массе, H 2 O – 4 % по массе).