Submit an Article
Become a reviewer
L. A. Yachmenova
L. A. Yachmenova
National Mineral Resources University (Mining University)
National Mineral Resources University (Mining University)

Articles

Metallurgy and concentration
  • Date submitted
    2021-03-31
  • Date accepted
    2022-04-26
  • Date published
    2022-11-03

Features of obtaining metallurgical products in the solid-state hydride synthesis conditions

Article preview

A scientific substantiation of solid-phase feedstock choice and preparation has been carried out, and the thermodynamic and kinetic aspects of solid-state hydride synthesis (SHS) of metal products have been analyzed using the nickel dichloride reduction as an example. The preliminary dehydration modes and methods for controlling the complete removal of crystalline water from chloride raw materials and Olenegorsk superconcentrate, which is natural oxide raw material, are described. Conditions, including initial solid chloride particle sizes, are established under which diffusion complications of reduction to metal in methyldichlorosilane vapor are minimized. Thermodynamic estimates of nickel chlorides and oxides reduction possibility, iron and copper with ammonia and methane at temperatures of 400-1000 K in equilibrium conditions have been carried out. It has been shown that the stoichiometric coefficients of the nickel dichloride in ammonia overall reduction reaction calculated by thermodynamic modeling are in agreement with experimental data. In contrast to the copper dichloride reduction, for nickel dichloride the formation of metal monochloride at the intermediate stage is uncharacteristic, which is associated with a higher thermal stability of nickel dichloride. The main kinetic regularities of the reduction of nickel, copper, and iron to metal under SHS conditions in ammonia, monosilane, and methane, as well as the nickel dichloride with methyldichlorosilane vapor and methane successive reduction, are considered. Approximation of experimental data by topochemical equations in a linear form showed that for reduction degrees a up to 0.7-0.8, these data are satisfactorily described by the Roginsky – Schultz equation. For a > 0,8 the “shrinking sphere” model works better, which confirms the localization of the solid-state reduction reaction at the interface, moves deep into the crystal with the formation of a of interlocked metal germs. The importance and prospects of the results obtained for the theory development of metallurgical processes, deep complex processing of natural iron oxide raw materials, metal products and new generation materials production, including superhydrophobic ones, are discussed. The relevance of the study from the point of view of applying the method of physical and chemical analysis to the study of complex heterogeneous metallurgical processes is noted.

How to cite: Syrkov A.G., Yachmenova L.A. Features of obtaining metallurgical products in the solid-state hydride synthesis conditions // Journal of Mining Institute. 2022. Vol. 256. p. 651-662. DOI: 10.31897/PMI.2022.25
Metallurgy and concentration
  • Date submitted
    2019-05-02
  • Date accepted
    2019-07-09
  • Date published
    2019-10-27

Effect of Temperature on Solid-state Hydride Metal Synthesis According to Thermodynamic Modeling

Article preview

Thermodynamic modeling of the reduction of copper dichloride in the media of various gaseous hydrides (ammonia, monosilane, methane) in the temperature range 273-1000 K was carried out. Calculations show that in narrower temperature ranges corresponding to the reactions of solid-state hydride synthesis (SHS) of metal sub- stances metal formation is usually supported by theoretical propositions. As a result of thermodynamic modeling, a principal result was obtained on the suppression of   competing processes of nitriding, siliconizing and carbonization   of metal under SHS conditions, which is important for metallurgical production. This additionally substantiates the correctness of previous experimental studies of SHS metals with modified surface and improved properties. By mod- eling, it was found that the reduction of solid copper dichloride to metal in ammonia or methane occurs stepwise (se- quentially, according to the Baykov rule) through the intermediate stages of the formation of a compound of low- valent copper – copper (I) chloride.

How to cite: Slobodov A.A., Syrkov A.G., Yachmenova L.A., Kushchenko A.N., Prokopchuk N.R., Kavun V.S. Effect of Temperature on Solid-state Hydride Metal Synthesis According to Thermodynamic Modeling // Journal of Mining Institute. 2019. Vol. 239. p. 550. DOI: 10.31897/PMI.2019.5.550
Humanities and fundamental researches
  • Date submitted
    2013-01-01
  • Date accepted
    2013-03-23
  • Date published
    2013-07-01

Correlation between reactivity, hydrophobicity of surface-modified metal-filler and tribological characteristics of lubricants based on it

Article preview

Experimentally the effect of adsorption and chemical properties of the metal filler (Al, Ni, Cu) on the value of the integral index of friction of lubrication tribosystem was studied. The basic relationship between the reactivity (during oxidation), hydrophobicity of the modified metal powders and tribological properties of lubricants based on them was determined.

How to cite: Syrkov A.G., Yachmenova L.A., Remzova E.V. Correlation between reactivity, hydrophobicity of surface-modified metal-filler and tribological characteristics of lubricants based on it // Journal of Mining Institute. 2013. Vol. 206. p. 245.