Submit an Article
Become a reviewer

Search articles for by keywords:
Li-F granites

Geology
  • Date submitted
    2023-11-02
  • Date accepted
    2024-03-05
  • Date published
    2024-08-26

The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon

Article preview

Based on the isotopic-geochemical analyses of zircons from granites of the Belokurikhinsky massif in the Gorny Altai using the U-Pb method, the ages of three intrusion phases have been determined for the first time: the age of the first phase refers to the time interval of 255-250 Ma, the second and the third phases have similar ages of about 250 Ma. The formation time of the Belokurikhinsky massif is estimated as not exceeding 5-8 Ma. The δ18O values for zircons from granites of the second and the third intrusion phases average around 11.5-12.0 ‰, indicating a significant contribution of a crustal component in the formation of the parent melts for granites of these phases. The crystallization temperature values of the zircons by the Ti-in-zircon thermometer for three phases range from 820 to 800 °C. The P-T crystallization parameters of titanite from the first phase, determined using a titanite thermobarometer, average around 770 °C and 2.7 kbar. The zircons from the first phase mostly exhibits geochemical characteristics of typical magmatic zircons. The zircons from the second and the third intrusion phases either may be unaltered magmatic zircons or enriched in incompatible elements (LREE, Th, U, Ti, Ca, etc.) due to fluid influence, resembling hydrothermal-metasomatic type zircons in terms of their geochemical characteristics. A number of zircon grains from the second and the third phases of granites demonstrate anomalous geochemical characteristics – the REE distribution spectra atypical for zircons (including “bird's wing” type spectra with oppositely tilted of light and heavy REE distribution profiles), as well as significantly higher contents of certain trace elements compared to other varieties. Such an enriched zircon composition and wide variations in the incompatible element content are due to non-equilibrium conditions of zircon crystallization and evolution of the fluid-saturated melt composition during the final stages of the massif formation.

How to cite: Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon // Journal of Mining Institute. 2024. Vol. 268 . p. 552-575. EDN RGKCIJ
Geology
  • Date submitted
    2020-08-03
  • Date accepted
    2020-12-13
  • Date published
    2021-06-24

Tectonic and magmatic factors of Li-F granites localization of the East of Russia

Article preview

We have investigated tectonic and magmatic factors of Li-F granites localization of the East of Russia. The study is based on the ideas of Far Eastern geologists about the deep structures of intraplate activity. A model of a source structure with mantle heat sources and ore-forming magmatic complexes was used. We carried out a special metallogenic analysis of the East of Russia as applied to the rare metal-tin-bearing formation of subalkaline leucogranites, including Li-F ones. Source structures are the main factor in the tectonic and magmatic development of the East of Russia, localization of ore-forming granites and the formation of rare-metal-tin ore regions. On deep layers of source structures there are areas of the mantle and earth's crust decompaction, heat, magmas and fluids sources, as well as granitoid cryptobatholiths. Relatively large massifs of leucogranites, small intrusions of tin monzonitoids and Li-F granites are concentrated near the modern surface. The source structures correspond to the rank of the ore region. The source structures in the South of the region are: Badzhalskaya, Miao-Chanskaya, Ippato-Merekskaya, Hogdu-Lianchlinskaya, Arminskaya, etc.; in the North: Pevekskaya, Kuiviveem-Pyrkakayskaya, Kuekvun-Ekiatapskaya, Iultinskaya, Telekayskaya, Central Polousnaya, Omsukchanskaya, etc. Three types of ore regions have been identified according to the degree of source structures and Li-F granites erosion. We have also outlined the patterns of source structures evolution and their place in the geological history of ore-bearing granites. A classification of source structures and its comparison with the classifications of regional intrusives and metallogenic subdivisions are proposed. It has been established that, despite the diversity of tectonic, geological and petrological settings in the East of Russia, the intrusions of Li-F granites are regulated by the same tectonic and magmatic factors. The tectonic and magmatic factors of Li-F granites localization in the East of Russia are identified and classified as geophysical, orogenic, geoblock, magmatic, metasomatic and disjunctive.

How to cite: Alekseev V.I. Tectonic and magmatic factors of Li-F granites localization of the East of Russia // Journal of Mining Institute. 2021. Vol. 248 . p. 173-179. DOI: 10.31897/PMI.2021.2.1
Geology
  • Date submitted
    2016-11-03
  • Date accepted
    2016-12-27
  • Date published
    2017-04-14

Evolution of mineral forms of rare element accumulation in ore-bearing granites and meta-somatites of Verkhneurmiysk ore cluster (Priamur region)

Article preview

It has been attempted to expand existing understanding of accessory mineralization evolution of rare metal-granite series at post-magmatic stage of their development and formation of associated hydrothermal deposits. Composition and distribution of rare elements of Verkhneurmiysk ore cluster have been examined from the position of mineralogy: the study focused on accessory and ore minerals Sn, W, Nb, Ta, Bi, Y, rare earth elements in rare metal Li-F granites and associated metasomatites. It has been discovered that accessory magmatic and hydrothermal mineral complexes share the same geochemical features, are formed under the leading role of abovementioned elements and consistently follow each other over time. It has been traced how mineral forms of accumulation of Sn, W, Nb, Ta, Y and rare earth elements evolve in the processes of magmatic crystallization and post-magmatic metasomatism in the time series: rare metal granites → zwitters → tourmalinites → chloritites. Mineral rocks of each stage were noted to inherit mineralogical and geochemical distinctions from the rocks of the previous stage. A significant number of minerals, forming in the course of two-three stages, have been discovered, as well as omnipresent magmagene-hydrothermal minerals. For a number of accessory minerals of rare metal granites post-magmatic generations have been identified. Special diversity among accessories of rare metal granites and zwitters was observed in tungsten, tin and bismuth minerals.

How to cite: Alekseev V.I., Sukhanova K.G., Gembitskayaya I.M. Evolution of mineral forms of rare element accumulation in ore-bearing granites and meta-somatites of Verkhneurmiysk ore cluster (Priamur region) // Journal of Mining Institute. 2017. Vol. 224 . p. 149-155. DOI: 10.18454/PMI.2017.2.149
Geology, search and prospecting of mineral deposits
  • Date submitted
    2008-10-24
  • Date accepted
    2008-12-01
  • Date published
    2009-12-11

History and prospects for the development of the karelian isthmus facing stone mineral base

Article preview

The prerequisites for the development of the deposits, the previous studies and the current state of Karelian Isthmus facing stone sources as well as their comparison with those of other regions of Northwestern Federal Districts of Russia are considered. The objects for top-priority geological prospecting are determined.

How to cite: Tutakova A.Y. History and prospects for the development of the karelian isthmus facing stone mineral base // Journal of Mining Institute. 2009. Vol. 183 . p. 144-148.