Submit an Article
Become a reviewer

Search articles for by keywords:
Fishburn estimates

Economic Geology
  • Date submitted
    2022-05-03
  • Date accepted
    2022-11-22
  • Date published
    2023-02-27

Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex

Article preview

Theoretical and applied aspects of scenario analysis of investment projects of enterprises in the mineral resource sector of the economy are considered, its advantages and disadvantages are analyzed. Taking into account the organizational and economic features of mineral resources management, a number of new modifications of the scenario analysis method, aimed at solving an urgent problem - reducing the information uncertainty in assessing the expected efficiency and risk of investment projects, are proposed. The peculiarity of the proposed new modifications is the use of the interval-probabilistic approach in the implementation of the scenario analysis procedure. This approach is based on a moderately pessimistic system of preferences in obtaining point values of the investment project initial parameters. Fishburn estimates and the hierarchy analysis method were used to reduce subjective uncertainty. The maximum likelihood values in the sense of the maximum a priori probability are used as expected estimates. An additional indicator of risk assessment, which characterizes the probability of the event that the net present value of the project will take a value less than the specified one, is proposed. When analyzing one project, this indicator is more informative than the standard deviation. A statistical hypothesis was tested on the improvement of the validity of investment decisions developed using the modified scenario analysis method compared to the standard method.

How to cite: Matrokhina K.V., Trofimets V.Y., Mazakov E.B., Makhovikov A.B., Khaykin M.M. Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex // Journal of Mining Institute. 2023. Vol. 259. p. 112-124. DOI: 10.31897/PMI.2023.3
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-09-22
  • Date accepted
    2022-03-24
  • Date published
    2022-04-29

Predicting dynamic formation pressure using artificial intelligence methods

Article preview

Determining formation pressure in the well extraction zones is a key task in monitoring the development of hydrocarbon fields. Direct measurements of formation pressure require prolonged well shutdowns, resulting in underproduction and the possibility of technical problems with the subsequent start-up of wells. The impossibility of simultaneous shutdown of all wells of the pool makes it difficult to assess the real energy state of the deposit. This article presents research aimed at developing an indirect method for determining the formation pressure without shutting down the wells for investigation, which enables to determine its value at any time. As a mathematical basis, two artificial intelligence methods are used – multidimensional regression analysis and a neural network. The technique based on the construction of multiple regression equations shows sufficient performance, but high sensitivity to the input data. This technique enables to study the process of formation pressure establishment during different periods of deposit development. Its application is expedient in case of regular actual determinations of indicators used as input data. The technique based on the artificial neural network enables to reliably determine formation pressure even with a minimal set of input data and is implemented as a specially designed software product. The relevant task of continuing the research is to evaluate promising prognostic features of artificial intelligence methods for assessing the energy state of deposits in hydrocarbon extraction zones.

How to cite: Zakharov L.А., Martyushev D.А., Ponomareva I.N. Predicting dynamic formation pressure using artificial intelligence methods // Journal of Mining Institute. 2022. Vol. 253. p. 23-32. DOI: 10.31897/PMI.2022.11