Submit an Article
Become a reviewer

Search articles for by keywords:
Cretaceous magmatism

Geology
  • Date submitted
    2021-04-04
  • Date accepted
    2022-04-26
  • Date published
    2022-07-26

Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago)

Article preview

The geological structure, structural relations with the underlying complexes, mineral composition, age and origin of sedimentary-volcanogenic and intrusive formations of the Chamberlain valley area (northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) are considered. As a result of the studies, two stages of the Late Precambrian endogenous activity in this area have been identified. For the first time the Vendian ages (593-559 Ma) of intrusive (dolerites) and effusive (basalts, andesites, tuffs) rocks were determined by U-Pb-method (SHRIMP-II) for Svalbard Archipelago. At the same time, the Grenville ages for large bodies of gabbro-diorites, metadolerites bodies (1152-967 Ma), and metagranites (936 Ma) were determined for the first time for this area, which correlates well with the ages of magmatic formations obtained earlier in the southern part of Wedel Jarlsberg Land. A detailed petrographic and petrochemical characterization of all the described objects were compiled and the paleotectonic conditions of their formation were reconstructed. Based on these data, the Chemberlendalen series, which is dated to the Late Vendian, and the Rechurchbreen series, which the authors attribute to the Middle Riphean and correlate with the lower part of the Nordbucht series are distinguished. The data obtained indicate a two-stage Precambrian magmatism in this area of the Svalbard archipelago and, most importantly, provide evidence for the first time ever of endogenous activity on Svalbard in the Vendian time. This fact makes it possible to reconsider in the future the history of the formation of folded basement of the Svalbard archipelago and the nature of the geodynamic conditions in which it was formed.

How to cite: Sirotkin A.N., Evdokimov A.N. Vendian age of igneous rocks of the Chamberlain valley area (Northern part of the Wedel Jarlsberg Land, Svalbard Archipelago) // Journal of Mining Institute. 2022. Vol. 255. p. 419-434. DOI: 10.31897/PMI.2022.20
Geology
  • Date submitted
    2020-06-13
  • Date accepted
    2020-06-14
  • Date published
    2020-06-30

Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia

Article preview

We investigated the deep structure of the lithosphere and the geodynamic conditions of granitoid magmatism in the Eastern Russia within the borders of the Far Eastern Federal District. The relevance of the work is determined by the need to establish the geotectonic and geodynamic conditions of the granitoids petrogenesis and ore genesis in the Russian sector of the Pacific Ore Belt. The purpose of the article is to study the deep structure of the lithosphere and determine the geodynamic conditions of granitoid magmatism in the East of Russia. The author's data on the magmatism of ore regions, regional granitoids correlations, archive and published State Geological Map data, survey mapping, deep seismic sounding of the earth's crust, gravimetric survey, geothermal exploration, and other geophysical data obtained along geotraverses. The magma-controlling concentric geostructures of the region are distinguished and their deep structure is studied. The connection of plume magmatism with deep structures is traced. The chain of concentric geostructures of Eastern Russia controls the trans-regional zone of leucocratization of the earth's crust with a width of more than 1000 km, which includes the Far Eastern zone of Li-F granites. Magmacontrolling concentric geostructures are concentrated in three granitoid provinces: Novosibirsk-Chukotka, Yano-Kolyma, and Sikhote-Alin. The driving force of geodynamic processes and granitoid magmatism was mantle heat fluxes in the reduced zones of the lithospheric slab. The distribution of slab windows along the Pacific mobile belt's strike determines the location of concentric geostructures and the magnitude of granitoid magmatism in the regional provinces. Mantle diapirs are the cores of granitoid ore-magmatic systems. The location of the most important ore regions of the Eastern Russia in concentric geostructures surrounded by annuli of negative gravity anomalies is the most important regional metallogenic pattern reflecting the correlation between ore content and deep structure of the earth's crust.

How to cite: Alekseev V.I. Deep structure and geodynamic conditions of granitoid magmatism in the Eastern Russia // Journal of Mining Institute. 2020. Vol. 243. p. 259-265. DOI: 10.31897/PMI.2020.3.259
Geology
  • Date submitted
    2020-05-28
  • Date accepted
    2020-05-28
  • Date published
    2020-06-30

The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating

Article preview

The article presents the results of the sulfide mineralization dating of the Mayskoe gold ore deposit using the Re-Os isotope system and isochron age estimation method of the main sulfide minerals: arsenopyrite, pyrite, and antimonite. The complex multistage formation of the studied sulfides, as well as the close intergrowths of genetically different mineral phases, did not allow obtaining a single rhenium-osmium isochron corresponding to the formation time of sulfide mineralization. Isochrones for single minerals, collected from each sulfide sample, turned out to be the result of isotopically distinct components mixture (radiogenic crustal and non-radiogenic mantle) and do not make sense from the geochronological point of view. In terms of geology, the most significant result of the study is an age estimation of 128.8 ± 4.4 Ma, obtained for the sulfide mineralization of Mayskoe deposit using Re-Os isotope dating of single fractions of pyrite and antimonite of the ore mineralization stage. While arsenopyrite is most closely associated with gold mineralization, one of the arsenopyrite varieties corrodes framboidal pyrite of the pre-ore stage, has a maximum of the crust component in the osmium isotopic composition and forms a mixing line in the isochron diagram with an apparent formation age of 458 ± 18 Ma. The initial osmium isotopic composition of the studied sulfides indicates a mixed mantle-crust source of sulfide mineralization. The issue of simultaneous ore genesis and granitoid magmatism in the Mayskoe deposit remained unresolved (the age of granitoids according to the U-Pb zircon system is 108 Ma). However, a possible solution could be the further determination of the Re-Os isochron age of the ore mineralization sulphides from the single paragenesis of a specific sample containing both arsenopyrite and pyrite (+ antimonite) with gold.

How to cite: Artemiev D.S., Krymsky R.S., Belyatsky B.V., Ashikhmin D.S. The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating // Journal of Mining Institute. 2020. Vol. 243. p. 266-278. DOI: 10.31897/PMI.2020.3.266
Geology
  • Date submitted
    2016-11-11
  • Date accepted
    2017-01-21
  • Date published
    2017-04-14

Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province)

Article preview

Results of magnetotelluric tests, carried out in Siberian kimberlite province, are examined from the viewpoint of structural control over location of kimberlite fields and bunches of kimberlite pipes. It is demonstrated that the key factors controlling occurrence of kimberlite magmatism are: deep systems of rift-driven fractures; areas of their intersection within high-ohmic blocks of Earth crust; conducting permeable areas, located at the intersections of deep faults. Various-rank objects of kimberlite magmatism are characterized by a certain combination of geoelectric heterogeneities, differing in resistance, lateral sizes and depth. The province is situated within the boundaries, limited by isolines 180-220 km of current asthenosphere; kimberlite areas – within the contours of high-resistance regional heterogeneities. Fields and bunches of kimberlite pipes are concentrated within boundaries of conducting subvertical zones. These factors can be used as criteria of predictive assessment for promising diamond areas of the ancient platforms.

How to cite: Pospeeva E.V. Conducting lithospheric heterogeneities as a criterion of predictive assessment for promising diamond areas (on the example of Siberian kimberlite province) // Journal of Mining Institute. 2017. Vol. 224. p. 170-177. DOI: 10.18454/PMI.2017.2.170
Geology
  • Date submitted
    2015-07-21
  • Date accepted
    2015-09-24
  • Date published
    2016-02-24

Tectonic development and granitoid magmatism of Northeast Asia in the late mesozoic

Article preview

The history of tectonic development and granitoid magmatism of Northeast Asia in the late Mesozoic is considered. The variety of tectonic situations and granitoid magmatism are favorable circumstances for the solution of many fundamental problems in geology, but tectono-magmatic division into districts is complicated owing to variability of the composition and the structure of the Earth’s crust. A rational approach to the tectonic division into districts of a region by the research of granitoid magmatism based on determining consolidated crust blocks with various tectonic history is offered. Pre-mesozoic and mesozoic structures of the Far East, among which primary and superimposed on the Precambrian and Paleozoic base Verkhoyansk orogeny prevails, are determined. The conclusion on the important role of middle massifs and passive margins with a thin Riphean-Paleozoic cover in geodynamic development of the Far East is drawn. The mesozoic activization of ancient structures along with young granitoid magmatism is established. The driving force of the Pacific ore belt granitization was the interaction of the Paleo-Pacific Plate and plates in Northeast Asia in the middle-late Mesozoic. The history of regional tectogenesis and granitoid magmatism in the late Triassic–Eocene (230-33,7 million years) taking into account the latest geodynamic concepts is tracked. The place in tectonic history of the Asian continental margin of plutonic and volcanic-plutonic belts is determined. Four stages of tectonomagmatic development of the Far East are established: the Jurassic and the early Cretaceous collisional, the early Cretaceous upsubduction, the late Cretaceous upsubduction-transform and the late Cretaceous–Paleogene rift-related.

How to cite: Alekseev V.I. Tectonic development and granitoid magmatism of Northeast Asia in the late mesozoic // Journal of Mining Institute. 2016. Vol. 217. p. 5-12.
Geology, search and prospecting of mineral deposits
  • Date submitted
    2008-10-22
  • Date accepted
    2008-12-14
  • Date published
    2009-12-11

Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere

Article preview

Comparative analysis was carried out for oil-and-gas-bearing basins of young and oldland platforms of the Pacific segment. Previously the same kind of analysis had been realized for the Atlantic segment of lithosphere. Obtained results confirm the unique geological structure and oil-and-gas capacity of Siberian platform, by these features it differs from all other cratons in the whole world.

How to cite: Archegov V.B. Peculiarities of structure and comparative analysis of oil-and-gas basins in the Pacific segment of lithosphere // Journal of Mining Institute. 2009. Vol. 183. p. 71-77.