-
Date submitted2022-05-25
-
Date accepted2023-02-02
-
Date published2023-08-28
Evaluation of the shear strength of rocks by cracks based on the results of testing samples with spherical indentors
Experimental data on the relationship of the residual shear strength of rocks in closed cracks with the functional characteristics of intact rocks – the tensile and compressive components of adhesion, the roughness of the crack surfaces, and the level of normal stresses are presented. A unified integrated approach determines the shear strength of intact and destroyed rocks, the residual shear strength of closed rough cracks has been developed. The approach provides for the selection of stress intervals corresponding to different types of fracture, for each of which a strength criterion is proposed, expressed in terms of functional characteristics of intact rock. An express method for estimating the residual shear strength of rocks by cracks with a rough surface has been developed, in which an improved method of loading samples with spherical indentors is used as a basic test method. The express method implements the transition from the data of mechanical tests of samples with spherical indentors to the shear strength indicators for cracks in the rock mass, taking into account the level of normal stresses and the roughness of the crack surfaces measured in field conditions. In this case the roughness scale developed by Barton is used. The express method is informative and available in the fieldwork.
-
Date submitted2020-06-11
-
Date accepted2021-03-30
-
Date published2021-06-24
Crystal morphology of spherical viruses
- Authors:
- Yury L. Voytekhovsky
The article discusses modern views on the structure of spherical virus capsids, which have the shape of icosahedrons (icosahedral viruses). Each face of icosahedron is composed of a single-layer closest packing of protein globules, which can have different orientation relative to the edges of icosahedron. If the lines of globules are parallel to the edges of icosahedron, then the capsid has a point symmetry group I h (with symmetry planes), if they are not parallel – the symmetry group I (without planes). From a mathematical point of view, in both symmetry groups there are series that unite equally (up to similarity) arranged capsids. They are connected pairwise by transitions to dual forms (homologous series). A hypothesis is formulated that the largest spherical viruses can have even more diverse and complex capsid structures. Along with icosahedron, their basic forms can be any simple shapes, allowed in I h and I symmetry groups (8 in total). A suggestion is made that transitions within similarity series and between homologous series have a phylogenetic significance. There are known spherical viruses of both symmetry groups. For example, the SARS-CoV-2 coronavirus has a symmetry group I h and belongs to a well-known series. The crystallographic approach allows to construct a strict morphological classification of spherical viruses. This is important for their early recognition and separate examination. The article demonstrates practical application of crystal morphology in the study of viral systems – an urgent problem of geoecology and life protection.
-
Date submitted2009-07-24
-
Date accepted2009-09-16
-
Date published2010-04-22
Determination of indices of strength certificate оf rocks using the method of specimens failure with spherical indentors
- Authors:
- V. A. Korshunov
- Yu. M. Kartashov
- V. A. Kozlov
The method has been developed for the determination of indices of strength certificate of rocks using the technique of specimen’s failure with oncoming spherical indentors. This method is based on the assessment of ultimate stresses acting in the tensile plane and within the zones of failured rocks under action of indentors at the moment of sample splitting. Formulas were obtained for calculation of indices of strength certificate, i.e. cohesion and angles of internal friction under tensile compression and nonuniform triaxial compression, ultimate strength in uniaxial compression and tension. This method is applicable in situ conditions.