Submit an Article
Become a reviewer
Yury L. Voytekhovsky
Yury L. Voytekhovsky
Ph.D., Dr.Sci., Professor
Saint Petersburg Mining University
, Ph.D., Dr.Sci., Professor
Saint Petersburg Mining University
Saint Petersburg
Russia
187
Total cited
7
Hirsch index

Co-authors

Articles

Geology
  • Date submitted
    2020-06-11
  • Date accepted
    2021-03-30
  • Date published
    2021-06-24

Crystal morphology of spherical viruses

Article preview

The article discusses modern views on the structure of spherical virus capsids, which have the shape of icosahedrons (icosahedral viruses). Each face of icosahedron is composed of a single-layer closest packing of protein globules, which can have different orientation relative to the edges of icosahedron. If the lines of globules are parallel to the edges of icosahedron, then the capsid has a point symmetry group I h (with symmetry planes), if they are not parallel – the symmetry group I (without planes). From a mathematical point of view, in both symmetry groups there are series that unite equally (up to similarity) arranged capsids. They are connected pairwise by transitions to dual forms (homologous series). A hypothesis is formulated that the largest spherical viruses can have even more diverse and complex capsid structures. Along with icosahedron, their basic forms can be any simple shapes, allowed in I h and I symmetry groups (8 in total). A suggestion is made that transitions within similarity series and between homologous series have a phylogenetic significance. There are known spherical viruses of both symmetry groups. For example, the SARS-CoV-2 coronavirus has a symmetry group I h and belongs to a well-known series. The crystallographic approach allows to construct a strict morphological classification of spherical viruses. This is important for their early recognition and separate examination. The article demonstrates practical application of crystal morphology in the study of viral systems – an urgent problem of geoecology and life protection.

How to cite: Voytekhovsky Y.L. Crystal morphology of spherical viruses // Journal of Mining Institute. 2021. Vol. 248. p. 190-194. DOI: 10.31897/PMI.2021.2.3
Geology
  • Date submitted
    2019-07-29
  • Date accepted
    2020-01-10
  • Date published
    2020-04-26

Petrographic structures and Hardy – Weinberg equilibrium

Article preview

The article is devoted to the most narrative side of modern petrography – the definition, classification and nomenclature of petrographic structures. We suggest a mathematical formalism using the theory of quadratic forms (with a promising extension to algebraic forms of the third and fourth orders) and statistics of binary (ternary and quaternary, respectively) intergranular contacts in a polymineralic rock. It allows constructing a complete classification of petrographic structures with boundaries corresponding to Hardy – Weinberg equilibria. The algebraic expression of the petrographic structure is the canonical diagonal form of the symmetric probability matrix of binary intergranular contacts in the rock. Each petrographic structure is uniquely associated with a structural indicatrix – the central quadratic surface in n-dimensional space, where n is the number of minerals composing the rock. Structural indicatrix is an analogue of the conoscopic figure used for optical recognition of minerals. We show that the continuity of changes in the organization of rocks (i.e., the probabilities of various intergranular contacts) does not contradict a dramatic change in the structure of the rocks, neighboring within the classification. This solved the problem, which seemed insoluble to A.Harker and E.S.Fedorov. The technique was used to describe the granite structures of the Salminsky pluton (Karelia) and the Akzhailau massif (Kazakhstan) and is potentially applicable for the monotonous strata differentiation, section correlation, or wherever an unambiguous, reproducible determination of petrographic structures is needed. An important promising task of the method is to extract rocks' genetic information from the obtained data.

How to cite: VOYTEKHOVSKY Y.L., ZAKHAROVA A.A. Petrographic structures and Hardy – Weinberg equilibrium // Journal of Mining Institute. 2020. Vol. 242. p. 133. DOI: 10.31897/PMI.2020.2.133
Without section
  • Date submitted
    1996-06-25
  • Date accepted
    1996-07-23
  • Date published
    1997-01-01

О структуре платиноносного федорово-панского интрузива (к методике прогнозирования оруденения)

Article preview

Обращено внимание на согласованный характер дифференциации вещества в Федорово-Панском интрузиве сразу на нескольких иерархических уровнях: геохимическом, минеральном, петрографическом и геолого-структурном. Для систематики петрографи­ческих структур использован новый подход, основанный на алгебраической теории квадра­тичных форм. Высказано предположение о том, что указанное структурирование вещества обусловлено формированием пород интрузива в условиях термодинамически от­крытой системы.

How to cite: Voitekhovskii Y.L. // Journal of Mining Institute. 1997. Vol. 143. p. 93.
Without section
  • Date submitted
    1992-08-14
  • Date accepted
    1992-10-24
  • Date published
    1993-02-01

К методике прогнозирования платиноносности пород федорово-панского интрузива по характеру их организации

Article preview

На  основании авторской теоретико-множественной концепции сложного минерального агрегата предложен статистический метод анализа организации горных пород. Пониженные энтропия распределений координаций и разнотипных контактов минеральных зерен в платиноносных габбро-норитах Федорово-Ланского интрузива указывает на их более высокую структурированность по сравнению с безрудными аналогами. Это следует учитывать при выделении наиболее перспективных горизонтов в монотонном разрезе интрузива.

How to cite: Voitekhovskii Y.L. // Journal of Mining Institute. 1993. Vol. 137. p. 49.