-
Date submitted2023-03-14
-
Date accepted2023-06-20
-
Date published2023-07-19
The wireless charging system for mining electric locomotives
The electric vehicles development has a high potential for energy saving: an energy-saving traffic control can reduce energy resource consumption, and integration with the power grid provides the ability of daily load pattern adjustment. These features are also relevant for underground mining. The critical element of vehicle-to-grid integration is the charging infrastructure, where wireless charging is promising to develop. The implementation of such systems in underground mining is associated with energy efficiency issues and explosion safety. The article discusses the development and research of a wireless charging system for mining electric locomotive A-5.5-600-U5. The analytic hierarchy process is used for justification of the circuitry and design solution by a comparison of different technical solutions based on energy efficiency and safety criteria. A complex computer model of the wireless charging system has been developed that gives the transients in the electrical circuit of a wireless charging system and the high-frequency field density distribution near the transmitting and receiving coils in a 3D setting. An approach to ignition risk evaluation based on the analysis of high-frequency field density in the charging area between the coils of the wireless charging system is proposed. The approach using a complex computer model is applied to the developed system. The study showed that the wireless charging system for mining electric locomotives operating in the gaseous-and-dusty mine is technically feasible and there are designs in which it is explosion safe.
-
Date submitted2018-12-25
-
Date accepted2019-03-22
-
Date published2019-06-25
Technology of blasting of strong valuable ores with ring borehole pattern
- Authors:
- I. V. Sokolov
- A. A. Smirnov
- A. A. Rozhkov
The ores of non-ferrous and precious metals, represented by hard rocks, has a peculiar feature, that is the effect of segregation, that is the tendency of ore minerals to break down into small size classes, which in the underground mining method accumulate in significant quantities on uneven surface of bottom layers and subsequently are lost. When mining valuable non-metallic materials, there is an acute problem of overgrinding, when fines do not meet the requirements for the quality of the final product. It is well known that the granulometric composition of the ore depends mainly on the technology and parameters of drilling and blasting operations. In underground mining of ore deposits, the main method of drilling and blasting is the borehole blasting with continuous construction charges with the ring pattern. The main drawbacks of the method are: uneven distribution of the explosive along the plane of the broken layer and the expenditure of a significant part of the blast energy of the charges of the continuous structure on the blasting effect, necessarily associated with over-grinding the ore. To solve these problems, the authors proposed a blasting technology, the essence of which lies in the fact that the uniform distribution of the energy concentration of explosives in the broken layer is ensured by the dispersion of charges by air gaps and a certain order of their placement in the ring plane. For the practical implementation of the technology, a method has been developed to form dispersed charges in deep boreholes that do not require a significant increase in labor costs and additional special means. A special technique has been created that allows defining the dispersion parameters, ensuring the sustained specific consumption of explosives over the entire plane of the broken layer. Experimental studies of the proposed technology in the natural conditions of an underground mine for the extraction of valuable granulated quartz were carried out. As a result, the possibility of a significant reduction in the specific consumption of explosives (by 42 %) has been established. At the same time, the yield of the commercial product increased by 10.7 % in total, and the yield of the fraction most favorable for further processing increased by 33.7 %.
-
Date submitted2015-12-28
-
Date accepted2016-02-28
-
Date published2016-12-23
Ion distribution function in their own gas plasma
- Authors:
- A. S. Mustafaev
- V. S. Sukhomlinov
Flat one-sided probe was used for the first time to measure the first seven coefficients in the Legendre polynomial expansion of ion energy and angle distribution functions for He + in He and Ar + in Ar under the conditions when the ion velocity gained along its free run distance is comparable to the average thermal energy of atoms. Analytic solution of the Boltzmann kinetic equation is found for ions in their own gas for arbitrary tension of electric field in plasma when the dominating process is resonant charge exchange. The dependence of cross-section of resonant charge exchange on the relative velocity is accounted for. It is demonstrated that the ion velocity distribution function differs significantly from the Maxwell distribution and is defined by two parameters instead of just one. The results of computational and experimental data agree quite well, provided the spread function of measurement technique is taken into account.
-
Date submitted2015-08-18
-
Date accepted2015-10-09
-
Date published2016-04-22
Analysis of charge space distribution influence on electric adhesion forces
- Authors:
- N. S. Pshchelko
Modeling ideas of physical and chemical processes when using an anodic bonding for materials connection are developed. The kinetics of a charge accumulation in an electrode region in a dielectric is considered. The thickness of a charge layer, electric fields strength and value of the ponderomotive pressure providing connection of materials are calculated. It is shown that the necessary ponderomotive pressure resulting in a dielectric-to-conductor seal is normally about ten megapascal and the time required is about ten minutes. The appearance of great pulling electric fields at anodic bonding process with a conductor surface to dielectric turns out to be possible due to the interlayer polarization developing in dielectric under the action of electric voltage. This results in a negative charge accumulation in a layer of small thickness beside anode. Thus applied electric voltage is distributed not through the whole thickness of a dielectric, but in fact is applied to a narrow area of the three-dimensional charge be-side anode. Arising strong electric fields force the connected materials to unite. The physical and mathematical models for force characteristics of non-uniform electric field are developed. Dependences of parameters of anodic bonding junction on time are considered. The expressions allowing to choose well-founded time of formation of anodic bonding junction are obtained, intensity of electrostatic fields and forces in dynamics is calculated. Research of a charge intermittence influence on electrostatic field strength has shown a considerable differences on small distances to the charged surface between carried out and traditional ways of calculation.
-
Date submitted2014-07-14
-
Date accepted2014-08-29
-
Date published2014-12-22
The development of ideas for improving explosive destruction of rock masses – the basis of progress in mining
- Authors:
- S. D. Viktorov
- V. M. Zakalinskii
The article describes the main areas of research in the field of the explosive destruction of rocks used in mining. The results of studies carried out in recent years are presented. Information on possi-ble applications for breaking up rocks of various energy sources is provided. Ideas are given on the possibility of raising the efficiency of explosives for mining rock by increasing the scale of the ex-plosive destruction. Information about the widespread adoption of these methods at Russia’s biggest iron ore companies is presented. Recent results on the fracture processes at different levels of scale up to destruction to form particles of submicron size are shown. Studying the structural transforma-tions of rock mass at the micro and macro features of allocation and distribution of energy in the charges of various designs allowed us to control the action of a new explosion by breaking up rock masses and the complex structure of multicomponent fields.