Submit an Article
Become a reviewer

Search articles for by keywords:
однослойная плотней-шая шаровая упаковка

Geology
  • Date submitted
    2020-06-11
  • Date accepted
    2021-03-30
  • Date published
    2021-06-24

Crystal morphology of spherical viruses

Article preview

The article discusses modern views on the structure of spherical virus capsids, which have the shape of icosahedrons (icosahedral viruses). Each face of icosahedron is composed of a single-layer closest packing of protein globules, which can have different orientation relative to the edges of icosahedron. If the lines of globules are parallel to the edges of icosahedron, then the capsid has a point symmetry group I h (with symmetry planes), if they are not parallel – the symmetry group I (without planes). From a mathematical point of view, in both symmetry groups there are series that unite equally (up to similarity) arranged capsids. They are connected pairwise by transitions to dual forms (homologous series). A hypothesis is formulated that the largest spherical viruses can have even more diverse and complex capsid structures. Along with icosahedron, their basic forms can be any simple shapes, allowed in I h and I symmetry groups (8 in total). A suggestion is made that transitions within similarity series and between homologous series have a phylogenetic significance. There are known spherical viruses of both symmetry groups. For example, the SARS-CoV-2 coronavirus has a symmetry group I h and belongs to a well-known series. The crystallographic approach allows to construct a strict morphological classification of spherical viruses. This is important for their early recognition and separate examination. The article demonstrates practical application of crystal morphology in the study of viral systems – an urgent problem of geoecology and life protection.

How to cite: Voytekhovsky Y.L. Crystal morphology of spherical viruses // Journal of Mining Institute. 2021. Vol. 248 . p. 190-194. DOI: 10.31897/PMI.2021.2.3