Submit an Article
Become a reviewer

Search articles for by keywords:
магний

Metallurgy and concentration
  • Date submitted
    2017-10-31
  • Date accepted
    2018-01-01
  • Date published
    2018-04-24

Peculiarities of formation and growth of nanodispersed intermetallic strengthening inclusions in rapidly-solidified alloys of Al–Mg–Zr–X-system

Article preview

The paper is devoted to the influence of the fourth element on the microstructure of the rapidly-solidified alloys of the Al–Mg–Zr-system. Alloys were additionally doped with high-melting-point metals Ti, Hf, W, and Nb. In the structure of all samples in the immediate area of the cooled surface, uniformly distributed intermetallic inclusions of several nanometers in size were detected. Such a structure can be represented as a dispersion-strengthened composite. A quantitative metallographic analysis was carried out to quantitatively describe the structure of the obtained particles of the cooled melt. The obtained rapidly-solidified alloys can be described as dispersion-strengthened composite materials with the aluminum-magnesium alloy matrix and the intermetallic particles strengthener. Depending on the alloying component, these particles differ in shape (spheres, plates, agglomerates) and in size (from 200 nm when alloying with Hf and W up to 1.2-1.5 μm with Ti and Nb alloying). The X-ray phase analysis (XPA) showed that in the studied alloys of the Al–5Mg–1.2Zr–(0.5÷2.0)X-system, high cooling rates of melts lead to the formation of new intermetallic compounds that are absent in equilibrium systems. The example of an alloy with hafnium additive shows that an increase in the content of the alloying component (from 0.5 to 2 % by mass) leads to an increase in the volume ratio of intermetallic inclusions (from 5 to 12.8 %). At the same time, their shape and average size remain unchanged. The additional alloying component will improve the mechanical characteristics of aluminum alloys by increasing the recrystallization threshold of a rapidly-solidified alloy.

How to cite: Budelovskii D.I., Petrovich S.Y., Lipin V.A. Peculiarities of formation and growth of nanodispersed intermetallic strengthening inclusions in rapidly-solidified alloys of Al–Mg–Zr–X-system // Journal of Mining Institute. 2018. Vol. 230 . p. 139-145. DOI: 10.25515/PMI.2018.2.139
Metallurgy and concentration
  • Date submitted
    2015-12-13
  • Date accepted
    2016-02-23
  • Date published
    2016-12-23

Properties isotropy of magnesium alloy strip workpieces

Article preview

The paper discusses the issue of obtaining high quality cast workpieces of magnesium alloys produced by strip roll-casting. Producing strips of magnesium alloys by combining the processes of casting and rolling when liquid melt is fed continuously to fast rolls is quite promising and economic. In the process of sheet stamping considerable losses of metal occur on festoons formed due to anisotropy of properties of foil workpiece, as defined by the macro- and microstructure and modes of rolling and annealing. The principal causes of anisotropic mechanical properties of metal strips produced by the combined casting and rolling technique are the character of distribution of intermetallic compounds in the strip, orientation of phases of metal defects and the residual tensions. One of the tasks in increasing the output of fit products during stamping operations consists in minimizing the amount of defects. To lower the level of anisotropy in mechanical properties various ways of treating the melt during casting are suggested. Designing the technology of producing strips of magnesium alloys opens a possibility of using them in automobile industry to manufacture light-weight body elements instead of those made of steel.

How to cite: Kavalla R., Bazhin V.Y. Properties isotropy of magnesium alloy strip workpieces // Journal of Mining Institute. 2016. Vol. 222 . p. 828-832. DOI: 10.18454/PMI.2016.6.828
Metallurgy and concentration
  • Date submitted
    2014-10-15
  • Date accepted
    2014-12-14
  • Date published
    2015-08-25

Formiing of structure and properties of sheet strips from magnesium alloys in the conditions of twin roll casting process

Article preview

In this article the problem of receiving high-quality cast strips from the magnesium alloys received by units of twin roll casting process in the combined methods is discussed. Production of sheets from magnesium alloys combination of casting and rolling at continuous giving of liquid melt to the rotating rolls is perspective and more economic method. Features of crystallization of magnesium alloys of AZ31 and AZ61 in a gap of rolls crystallizers depending on heat exchange conditions at change of technological parameters are considered. Due to impact on melt in forming system it is possible to provide formation of equal fine-grained structure of sheet hire without superficial defects. Development of the production technology of sheets from magnesium alloys creates possibility of their use of automobile branch as the facilitated details of bodies instead of the knots made of steel.

How to cite: Kavalla R., Bazhin V.Y. Formiing of structure and properties of sheet strips from magnesium alloys in the conditions of twin roll casting process // Journal of Mining Institute. 2015. Vol. 214 . p. 33-38.