-
Date submitted2023-07-19
-
Date accepted2023-07-19
-
Date published2023-07-19
Energy efficiency in the mineral resources and raw materials complex
Energy efficiency and energy saving at all times and especially at the present stage of development of industry and economy have played an extremely important role. Regardless of which countries and according to what criteria they build energy development plans, energy efficiency and energy saving are always a priority. This fully applies to the mineral resources complex, in which energy consumption as a whole makes up a large share of total consumption. The resources mined in the mineral resources complex are themselves a source of energy. The energy sector is evolving in many ways. Many scientific works, the results of which are reflected in publications, confirm the relevance of research in the energy efficiency field. But the approach to individual decisions in the mineral resource industry is specific and it is worth of separate consideration. Recently, much attention has been paid to “green energy” and renewable energy sources. However, energy efficiency in the field of traditional generation and consumption remains an urgent problem and its solution is in constant development. One of the main directions for improving energy efficiency is the development of autonomous systems for the electrical and thermal power engineering. All these problems are reflected in a special volume of the Journal of the Mining Institute, the articles are divided into four sections: energy efficiency of the electric drive in the mineral resources complex (MRC); energy efficiency of industrial plants and enterprises in MRC; power quality and renewable sources in MRC; autonomous power supply systems in MRC. The presented articles contain valuable material from the scientific and practical points of view and can form the basis for further research in the energy efficiency field.
-
Date submitted2021-05-19
-
Date accepted2022-04-07
-
Date published2022-04-29
On the possibility of reducing man-made burden on benthic biotic communities when mining solid minerals using technical means of various designs
The paper analyses features of the species composition and diversity of biotic communities living within the ferromanganese nodule fields (the Clarion-Clipperton field), cobalt-manganese crusts (the Magellan Seamounts) and deep-sea polymetallic sulphides (the Ashadze-1, Ashadze-2, Logatchev and Krasnov fields) in the Russian exploration areas of the Pacific and Atlantic Oceans. Prospects of mining solid minerals of the world’s oceans with the least possible damage to the marine ecosystems are considered that cover formation of the sediment plumes and roiling of significant volumes of water as a result of collecting the minerals as well as conservation of the hydrothermal fauna and microbiota, including in the impact zone of high temperature hydrothermal vents. Different concepts and layout options for deep-water mining complexes (the Indian and Japanese concepts as well as those of the Nautilus Minerals and Saint Petersburg Mining University) are examined with respect to their operational efficiency. The main types of mechanisms that are part of the complexes are identified and assessed based on the defined priorities that include the ecological aspect, i.e. the impact on the seabed environment; manufacturing and operating costs; and specific energy consumption, i.e. the technical and economic indicators. The presented morphological analysis gave grounds to justify the layout of a deep-sea minerals collecting unit, i.e. a device with suction chambers and a grip arm walking gear, selected based on the environmental key priority. Pilot experimental studies of physical and mechanical properties of cobalt-manganese crust samples were performed through application of bilateral axial force using spherical balls (indenters) and producing a rock strength passport to assess further results of the experimental studies. Experimental destructive tests of the cobalt-manganese crust by impact and cutting were carried out to determine the impact load and axial cutting force required for implementation of the collecting system that uses a clamshell-type effector with a built-in impactor.
-
Date submitted2021-03-30
-
Date accepted2021-05-26
-
Date published2021-09-20
Improving the efficiency of autonomous electrical complexes of oil and gas enterprises
- Authors:
- Boris N. Abramovich
- Ivan A. Bogdanov
In accordance with the Energy Strategy until 2035, the possibility of increasing the efficiency of energy use of secondary energy resources in the form of associated oil and waste gases has been substantiated by increasing the energy efficiency of the primary energy carrier to 90-95 % by means of cogeneration plants with a binary cycle of electricity generation and trigeneration systems with using the energy of the waste gas to cool the air flow at the inlet of gas turbine plants. The conditions for maintaining the rated power of the main generator with variations in the ambient temperature are shown. An effective topology of electrical complexes in a multi-connected power supply system of oil and gas enterprises according to the reliability condition is presented, which allows increasing the availability factor by 0.6 %, mean time between failures by 33 %, the probability of failure-free operation by 15 % and reducing the mean time of system recovery by 40 %. The article considers the use of parallel active filters to improve the quality of electricity and reduce voltage drops to 0.1 s when used in autonomous electrical complexes of oil and gas enterprises. The possibility of providing uninterrupted power supply when using thyristor systems for automatic reserve input has been proven. A comparative analysis was carried out to assess the effect of parallel active filters and thyristor systems of automatic transfer of reserve on the main indicators of the reliability of power supply systems of oil and gas enterprises.
-
Date submitted2019-09-29
-
Date accepted2020-02-24
-
Date published2020-04-24
Vs sustainable development: scenarios for the future
Issues of sustainable development began to concern mankind starting from the 20th century, when mass industrialization and the depletion of natural resource potential contributed to the formulation of environmental issues at one of the leading places in scientific discourse. However, what if the goals of sustainable development would not be achieved to 2030? What other way we can identify for humanity to survive? So, the study is about the problems of studying the understanding of the term “sustainable development”, considering the evolution of the formation of the concept of sustainable development and analyzing the modern goals of sustainable development for attainability. From an analysis of domestic and foreign experience, possible scenarios of the development of mankind are identified (such as 1. Creating an environmental framework, 2. Implementation of sustainable nature management practices in the conditions of natural and man-made objects, 3. Implementation of “geoengineering projects”, 4. Construction of autonomous ecosystems, 5. Space exploration in search of a new planet for life, provided that the goals of sustainable development would not be achieved. It has been established that today probability of achieving all the sustainable development goals by 2030 is too small, and the indicated scenarios require, firstly, the development of science and technology, and secondly, a competent assessment of the value of nature and solving the issue of specifying property rights for natural goods.
-
Date submitted2020-01-10
-
Date accepted2020-01-14
-
Date published2020-02-25
Biogeochemical assessment of soils and plants in industrial, residential and recreational areas of Saint Petersburg
Soils and plants of Saint Petersburg are under the constant technogenic stress caused by human activity in industrial, residential, and recreational landscapes of the city. To assess the transformed landscapes of various functional zones, we studied utility, housing, and park districts with a total area of over 7,000 hectares in the southern part of the city during the summer seasons of 2016-2018. Throughout the fieldwork period, 796 individual pairs of soil and plant samples were collected.A complex of consequent laboratory studies performed in an accredited laboratory allowed the characterization of key biogeochemical patterns of urban regolith specimens and herbage samples of various grasses. Chemical analyses provided information on the concentrations of polluting metals in soils and plants of different land use zones.Data interpretation and calculation of element accumulation factors revealed areas with the most unfavorable environmental conditions. We believe that a high pollution level in southern city districts has led to a significant degree of physical, chemical, and biological degradation of the soil and vegetation cover. As of today, approximately 10 % of the Technosols in the study area have completely lost the ability to biological self-revitalization, which results in ecosystem malfunction and the urgent need for land remediation.