
- Vol 271
- Vol 270
- Vol 269
- Vol 268
- Vol 267
- Vol 266
- Vol 265
- Vol 264
- Vol 263
- Vol 262
- Vol 261
- Vol 260
- Vol 259
- Vol 258
- Vol 257
- Vol 256
- Vol 255
- Vol 254
- Vol 253
- Vol 252
- Vol 251
- Vol 250
- Vol 249
- Vol 248
- Vol 247
- Vol 246
- Vol 245
- Vol 244
- Vol 243
- Vol 242
- Vol 241
- Vol 240
- Vol 239
- Vol 238
- Vol 237
- Vol 236
- Vol 235
- Vol 234
- Vol 233
- Vol 232
- Vol 231
- Vol 230
- Vol 229
- Vol 228
- Vol 227
- Vol 226
- Vol 225
- Vol 224
- Vol 223
- Vol 222
- Vol 221
- Vol 220
- Vol 219
- Vol 218
- Vol 217
- Vol 216
- Vol 215
- Vol 214
- Vol 213
- Vol 212
- Vol 211
- Vol 210
- Vol 209
- Vol 208
- Vol 207
- Vol 206
- Vol 205
- Vol 204
- Vol 203
- Vol 202
- Vol 201
- Vol 200
- Vol 199
- Vol 198
- Vol 197
- Vol 196
- Vol 195
- Vol 194
- Vol 193
- Vol 191
- Vol 190
- Vol 192
- Vol 189
- Vol 188
- Vol 187
- Vol 185
- Vol 186
- Vol 184
- Vol 183
- Vol 182
- Vol 181
- Vol 180
- Vol 179
- Vol 178
- Vol 177
- Vol 176
- Vol 174
- Vol 175
- Vol 173
- Vol 172
- Vol 171
- Vol 170 No 2
- Vol 170 No 1
- Vol 169
- Vol 168
- Vol 167 No 2
- Vol 167 No 1
- Vol 166
- Vol 165
- Vol 164
- Vol 163
- Vol 162
- Vol 161
- Vol 160 No 2
- Vol 160 No 1
- Vol 159 No 2
- Vol 159 No 1
- Vol 158
- Vol 157
- Vol 156
- Vol 155 No 2
- Vol 154
- Vol 153
- Vol 155 No 1
- Vol 152
- Vol 151
- Vol 150 No 2
- Vol 150 No 1
- Vol 149
- Vol 147
- Vol 146
- Vol 148 No 2
- Vol 148 No 1
- Vol 145
- Vol 144
- Vol 143
- Vol 140
- Vol 142
- Vol 141
- Vol 139
- Vol 138
- Vol 137
- Vol 136
- Vol 135
- Vol 124
- Vol 130
- Vol 134
- Vol 133
- Vol 132
- Vol 131
- Vol 129
- Vol 128
- Vol 127
- Vol 125
- Vol 126
- Vol 123
- Vol 122
- Vol 121
- Vol 120
- Vol 118
- Vol 119
- Vol 116
- Vol 117
- Vol 115
- Vol 113
- Vol 114
- Vol 112
- Vol 111
- Vol 110
- Vol 107
- Vol 108
- Vol 109
- Vol 105
- Vol 106
- Vol 103
- Vol 104
- Vol 102
- Vol 99
- Vol 101
- Vol 100
- Vol 98
- Vol 97
- Vol 95
- Vol 93
- Vol 94
- Vol 91
- Vol 92
- Vol 85
- Vol 89
- Vol 87
- Vol 86
- Vol 88
- Vol 90
- Vol 83
- Vol 82
- Vol 80
- Vol 84
- Vol 81
- Vol 79
- Vol 78
- Vol 77
- Vol 76
- Vol 75
- Vol 73 No 2
- Vol 74 No 2
- Vol 72 No 2
- Vol 71 No 2
- Vol 70 No 2
- Vol 69 No 2
- Vol 70 No 1
- Vol 56 No 3
- Vol 55 No 3
- Vol 68 No 2
- Vol 69 No 1
- Vol 68 No 1
- Vol 67 No 1
- Vol 52 No 3
- Vol 67 No 2
- Vol 66 No 2
- Vol 64 No 2
- Vol 64 No 1
- Vol 54 No 3
- Vol 65 No 2
- Vol 66 No 1
- Vol 65 No 1
- Vol 53 No 3
- Vol 63 No 1
- Vol 61 No 1
- Vol 62 No 1
- Vol 63 No 2
- Vol 62 No 2
- Vol 61 No 2
- Vol 59 No 2
- Vol 60 No 2
- Vol 51 No 3
- Vol 60 No 1
- Vol 49 No 3
- Vol 50 No 3
- Vol 59 No 1
- Vol 57 No 2
- Vol 58 No 2
- Vol 58 No 1
- Vol 56 No 2
- Vol 57 No 1
- Vol 55 No 2
- Vol 48 No 3
- Vol 56 No 1
- Vol 47 No 3
- Vol 55 No 1
- Vol 54 No 2
- Vol 53 No 2
- Vol 54 No 1
- Vol 52 No 2
- Vol 46 No 3
- Vol 53 No 1
- Vol 52 No 1
- Vol 51 No 2
- Vol 51 No 1
- Vol 50 No 2
- Vol 49 No 2
- Vol 48 No 2
- Vol 50 No 1
- Vol 49 No 1
- Vol 45 No 3
- Vol 47 No 2
- Vol 44 No 3
- Vol 43 No 3
- Vol 42 No 3
- Vol 48 No 1
- Vol 46 No 2
- Vol 45 No 2
- Vol 46 No 1
- Vol 47 No 1
- Vol 44 No 2
- Vol 43 No 2
- Vol 41 No 3
- Vol 42 No 2
- Vol 39 No 3
- Vol 37 No 3
- Vol 45 No 1
- Vol 41 No 2
- Vol 39 No 2
- Vol 44 No 1
- Vol 38 No 2
- Vol 37 No 2
- Vol 38 No 3
- Vol 43 No 1
- Vol 42 No 1
- Vol 41 No 1
- Vol 40
- Vol 39 No 1
- Vol 36 No 2
- Vol 35 No 2
- Vol 38 No 1
- Vol 35 No 3
- Vol 34 No 2
- Vol 34 No 3
- Vol 33 No 2
- Vol 36 No 1
- Vol 37 No 1
- Vol 36 No 3
- Vol 35 No 1
- Vol 34 No 1
- Vol 32 No 3
- Vol 33 No 3
- Vol 32 No 2
- Vol 33 No 1
- Vol 31
- Vol 30 No 3
- Vol 30 No 2
- Vol 30 No 1
- Vol 32 No 1
- Vol 29 No 3
- Vol 29 No 1
- Vol 29 No 2
- Vol 28
- Vol 27 No 1
- Vol 27 No 2
- Vol 26 No 2
- Vol 26 No 1
- Vol 25 No 2
- Vol 25 No 1
- Vol 23
- Vol 24
- Vol 15 No 16
- Vol 22
- Vol 20
- Vol 17 No 18
- Vol 21
- Vol 19
- Vol 13 No 3
- Vol 14
- Vol 13 No 2
- Vol 12 No 3
- Vol 12 No 2
- Vol 13 No 1
- Vol 12 No 1
- Vol 11 No 3
- Vol 11 No 2
- Vol 10 No 3
- Vol 10 No 2
- Vol 11 No 1
- Vol 9 No 2
- Vol 10 No 1
- Vol 9 No 1
- Vol 8
- Vol 7 No 3
- Vol 7 No 2
- Vol 7 No 1
- Vol 6 No 2
- Vol 6 No 1
- Vol 5 No 4-5
- Vol 5 No 2-3
- Vol 5 No 1
- Vol 4 No 5
- Vol 4 No 4
- Vol 4 No 3
- Vol 4 No 2
- Vol 3
- Vol 4 No 1
- Vol 2 No 5
- Vol 2 No 4
- Vol 2 No 3
- Vol 2 No 1
- Vol 2 No 2
- Vol 1 No 5
- Vol 1 No 4
- Vol 1 No 3
- Vol 1 No 2
- Vol 1 No 1
-
Date submitted1912-12-22
-
Date accepted1913-02-15
-
Date published1913-04-13
Pseudochroism in twin calcite plates
- Authors:
- V. V. Nikitin
The category of pseudochroism phenomenon also includes the well-known, frequently observed phenomenon of coloring of twin plates growing through calcite grains along the planes of the first obtuse rhombohedron (1012). In this case, the phenomenon of pseudochroism is often very bright for this reason, and also because the position of the twin plates is here easily defined, the phenomenon can be more easily subjected to research. This work represents an attempt at such a study. The application of a “universal” method to the study greatly enriches the picture of the phenomenon and allows us to answer some of the questions it raises. Therefore, I decide to publish the results obtained despite the awareness of the incompleteness of the coverage of the issue.
-
Date submitted1912-11-28
-
Date accepted1913-01-21
-
Date published1913-04-13
On the accumulation of errors in surveying mining sites
- Authors:
- I. M. Bakhurin
The question of the accumulation of errors in a mining site of arbitrary shape leads to the consideration of complex formulas that do not make it possible to draw any general conclusions or give general rules for solving the issue in various practical cases. The possibility of simplification begins from the moment when we attribute some kind of pattern to the broken line. In ordinary mining polygons, such simple regularity of a broken line is absent; straight elongated polygons are quite rare, and the above-mentioned regular broken line is even rarer. At the same time, it cannot be said that there was no regularity in the form of ordinary mining sites, at least in the coal mines of the south of Russia, which we mainly mean in all further discussion.
-
Date submitted1912-10-22
-
Date accepted1913-01-19
-
Date published1913-04-13
On the optical study of minerals in convergent polarized light
- Authors:
- A. N. Zavaritskii
This article proposes an attempt to deduce the main principles underlying the use of converging light, based on the basics of the theodolite method. This particular path is the most appropriate if you follow the requirement to go from simpler to more complex. As will be seen from what follows, the logical development in this the direction of the main provisions of the theodolite method leads to almost the same ideas from which Becke proceeded when explaining the phenomena detected by a crystal in converging light. In addition to some theoretical interest that the presentation of these techniques may have, based on the ideas underlying the theodolite method, it seemed to me useful for the purpose of comparatively assessing the limits of application of each of these two different methods of research (see article).
-
Date submitted1912-08-28
-
Date accepted1912-12-17
-
Date published1913-04-13
On the hardness and microstructure of alloys of telluride and sulfur compounds
- Authors:
- P. Ya. Saldau
The main obstacle to the development of the research of hardness was and is the fact that there is no confidence in the accuracy of the results obtained, since in different conditions for the same substance the results can be different and thus the possibility of comparing results obtained in different ways will be lost. The article describes lead-tellurium alloys, the process of their preparation and research methods. See the results in the article.
-
Date submitted1912-09-17
-
Date accepted1913-11-29
-
Date published1913-04-13
Contractive vectorial energy of volume and surface and thermal state of substances
- Authors:
- P. P. Von-Weymarn
In this short message I will limit myself to presenting some initial provisions and the main conclusions of my work (see article). When considering the thermal state of a piece of solid matter (for example, a piece of gold), it is therefore necessary to take into account three surfaces: 1. An outer surface that separates a piece of solid matter from the surrounding space. 2. The inner surface of contact of the crystal grains that make up the piece. The total, internal dynamic (pulsating) surface of crystalline grains.
-
Date submitted1912-09-24
-
Date accepted1913-01-09
-
Date published1913-04-13
A simple and quick way to demonstrate the general law of crystallization
- Authors:
- E. S. Fedorov
The general law discussed here is that a crystal falling out of solution tends to take on the smallest surface area. This law, which has a simple and well-known theoretical basis, is usually demonstrated by examples of crystallization, or rather recrystallization, which requires a long time, even months, or at least days. I have come across a preparation in which this demonstration can last for several seconds. This drug is sodium nitrate, microscopic crystals of which dissolve from breathing in a few seconds and crystallize at approximately the same time due to evaporation. Thanks to this speed, of course, the mentioned law сan be also quickly demonstrated.