Submit an Article
Become a reviewer
Vol 183
Pages:
101-111
Download volume:
RUS

Nickel-containing iron oxides in the Buruktal deposit, South Urals

Authors:
S. O. Ryzkova1
I. V. Talovina2
V. G. Lazarenkov3
N. I. Vorontsova4
V. L. Ugolkov5
About authors
  • 1 — Post-graduate student, Scientific Secretary Saint-Petersburg State Mining Institute (Technical University)
  • 2 — Ph.D. Assistant Saint-Petersburg State Mining Institute (Technical University)
  • 3 — Ph.D., Dr.Sci. Professor Saint-Petersburg State Mining Institute (Technical University)
  • 4 — Ph.D. Assistant Saint-Petersburg State Mining Institute (Technical University)
  • 5 — Ph.D. Institute of Silicate Chemistry of RAS
Date submitted:
2008-10-01
Date accepted:
2008-12-05
Date published:
2009-12-11

Abstract

In the Buruktal supergene nickel deposit, iron oxides possess vertical mineralogical zoning (bottom-up): magnetite-maghemite-goethite-hematite. The main rock- and ore-forming mineral in the iron-oxide zone of the deposit is magnetite, presented by three generations: primary relic magnetite, surviving from ultramafic rocks; secondary magnetite, forming at serpentinization process and neogenic supergene magnetite. Supergene magnetite, like a goethite, is nickel ore mineral, containing about 1 % NiO. Under the complex thermal analysis data, maghemite-magnetite and goethite have two main diagnostic maximums: exothermal effect of magnetite, caused by magnetite oxidation to maghemite in the interval 317‑340 °С, displays maximum at 327 °С («magnetite» point), and endothermic effect of goethite, connected with loss of constitutional water of the mineral and its transition to hematite in the interval 269‑296 °С, displays maximum at 288 °С («goethite» point).

Keywords:
weathering crust iron-oxide zone serpentinites magnetite
Go to volume 183

References

  1. Варлаков А.С. Петрология процессов серпентинизации гипербазитов складчатых областей. Свердловск: Изд-во УНЦ АН СССР, 1986. 224 с.
  2. Дир У.А. Породообразующие минералы / У.А.Дир, Р.А.Хауи, Дж.Зусман. М.: Мир, 1966. Т.3. 316 с.
  3. Капусткин Г.Р. Минералогические особенности в формировании оксидов – гидроксидов железа в процессе выветривания серпентинитов Южного Урала / Г.Р.Капусткин, И.Е.Горшкова, А.В.Савцов // Кора выветривания. Москва, 1986. Вып.19. С.66-77.
  4. Куземкина Е.Н. Никельсодержащий магнетит // Никеленосные коры выветривания Урала. М.: Наука, 1970. С.193-202.
  5. Эдельштейн И.И. Вещественный состав продуктов выветривания на ультраосновных породах Буруктальского массива // Материалы по геологии и полезным ископаемым Южного Урала. М.: Госгеолтехиздат, 1956. Вып.1, С.38-60.
  6. Incorporation of Ni into natural goethite: An investigation by X-ray absorption spectroscopy / M.L.Carvalho-e-Silva, R A.Y.amos, A.C.N.Tolentino, J.Enzweiler, S.M.Netto, M.C.M.Alves // Amer. Mineral. 2003. Vol.88, pp.876-882.
  7. Manceau A. Heterogeneous distribution of nickel in hidrous silicates from New Caledonia ore deposits / A.Manceau, G.Calas // Amer. Mineral. 2000. Vol.0, pp.9-558.
  8. Shellmann W. Behaviour of nickel, cobalt and cromium in ferrigionous lateritic nickel ores // Bull. BRGM. 1978. Ser II. № 3. Sec.II, pp. 275-282.

Similar articles

A complex of gravi-, magneto-, electroprospecting аnd geoelectrochemical methods for local prediction and prospecting for hydrocarbon deposits
2009 S. G. Alekseev, S. A. Veshev, N. A. Voroshilov, E. G. Margovich, M. B. Shtokalenko, O. F. Putikov
Application of electrical prospecting in combination with seismic prospecting for the geological section prediction and search of hydrocarbon deposits
2009 V. A. Kuzin, A. A. Korukhova
Analytical continuation of geophysical fields by continued fractions method
2009 K. M. Ermokhin
Assessment of stress-strain state of temporary support during constructhion of station tunnels of the metro
2009 V. A. Maslak
Karl Ivanovich Bohdanowicz – a scientist аnd pedagogue
2009 Yu. V. Lir
Data collection and processing system of low-frequency electrical method with artificial source
2009 A. I. Geraskin