Forecasting the power consumption of mines on the basis of stochastic time-series models
About authors
- 1 — Saint Petersburg State Mining Institute (Technical University)
- 2 — Saint Petersburg State Mining Institute (Technical University)
Abstract
The paper is devoted to building up time series models to forecast the power consumption of a mine. The results discussed are obtained using various linear filter models and artificial neural network. The wavelet transform of the raw time series is shown to be an efficient technique to increase the forecasting accuracy.
Область исследования:
(Archived) Geotechnical engineering, powerengineering and automation
References
- Box G., Jenkins G. Time series analysis: Forecasting and control. Moscow. Mir, 1974. Vol. 1. 406 p.; Vol.2., 197 p.
- Galushkin A.IJ. Neural Networks Theory. Vol.1: Tutorial/IPRZR. Moscow, 2000. 416 р.
- Novikov L.V. Introductory wavelet signal analysis: Tutorial. Saint Petersburg: IAnP RAN, 1999. 152 р.
- Shumilova G.P., Gotman N.E., Startzeva T.B. Forecasting the power consumption of power grid on the basis of novel information technologies. Yekaterinburg: UrO RAN, 2002. 25 р.
Similar articles
Using of electric field for manufacturing and nondestructive testing of a capacitor sensors and actuators
2010 N. S. Pshchelko, V. V. Buevich
Mathematical description of microwave contact level controller for liquid agent
2010 N. V. Teterin, O. M. Bolshunova
Study of the opening of copper presence electrolytic slimes of the copper production
2010 S. A. Modestova