Submit an Article
Become a reviewer
Vol 221
Download volume:

Development of import subtituting technologies for increasing productivity of sintering machines and strength of agglomerates

V. L. Trushko1
V. A. Utkov2
About authors
  • 1 — Saint-Petersburg Mining University
  • 2 — Saint-Petersburg Mining University
Date submitted:
Date accepted:
Date published:


A problem of industrial fluxed agglomerates self-destruction in the process of cooling after sintering has been examined. It has been revealed that the main reason of strength degradation is polymorphism of dicalcium silicate Ca2SiO4 (or short designation С2S): β-Ca2SiO4 ® γ-Ca2SiO4. Ways for increasing the  agglomerate  strength by physical and crystal-chemical stabilization of the high temperature modification of C2S have been proposed and tested. Physical stabilization of C2S agglomerate is increased with its structure reinforcement due to thickening of walls between large pores that is achieved by increasing height of the sintered layer through improvement of its gas permeability. The task is addressed by substituting the previously used import sintering ore with the  polydisperse ore from the Yakovlevo field, which improves the charge  pelletizing by 3-4 times and helps to bring the  height of the sintered layer and the strength of the domestic agglomerate up to the international best practice standards, while eliminating a need to purchase import high-vacuum   exhausters. In practice crystal-chemical stabilization of C2S within iron-ore  agglomerate is ensured by adding an  opti- mal multicomponent additive in the form of the    waste product  generated in production  of alumina  from bauxites, i.e. the red mud, to the initial sinter charge. Thus mechanical strength of agglomerates and pellets is increased by 5-10 % and their hot strength improves by 20-40 %. The productivity of sintering machines and blast furnaces improves by 5-10 %. Specific coke consumption reduces by 2-2.5 %. In production of iron-ore pellets red mud is substituting the import  bentonite.

Go to volume 221


  1. Газодинамические особенности слоя исходной аглошихты / И.С.Берсенев, Б.А.Боковиков, В.И.Клейн, А.А.Кутузов, Ю.Г.Ярошенко // Сталь. 2010. № 9. С.16-18.
  2. Газодинамические характеристики агломерационных шихт / Л.К.Герасимов, Л.Г.Журавлева, Ю.А.Фролов, Г.Г.Добряков // Известия вузов. Черная металлургия. 1984. № 2. С.31-32.
  3. Коротич В.И. Агломерация рудных материалов / В.И.Коротич, Ю.А.Фролов, Г.Н.Безденежный / УГТУ-УПИ. Ека- теринбург. 2003. 400 с.
  4. Металлургия чугуна / Е.Ф.Вегман, Н.Ф.Жеребин, А.Н.Похвиснев, Ю.С.Юсфин, И.Ф.Курунов, А.Е.Пареньков, П.И.Черноусов. М.: Академкнига. 2004. 774 с.
  5. Панычев А.А. Математическая модель процесса агломерации для его оптимизации и автоматизации // Обогащение руд. 2006. № 2. С.29-31
  6. Пат.2552218 РФ. Способ подготовки агломерационной шихты к спеканию / В.Л.Трушко, В.А.Утков, А.С.Клямко. Опубл.10.06.2015. Бюл. № 17.
  7. Трушко В.Л. Исследование технологических свойств аглоруды Яковлевского месторождения / В.Л.Трушко, В.А.Утков, А.С.Клямко // Записки Горного института. 2015. Т. 215. С. 52-56.
  8. Утков В.А. Моделирование зависимости прочности агломератов от их основности / В.А.Утков, О.В.Зырянова // Журнал прикладной химии. 2013. Т. 86. № 3. С.336-339.
  9. Утков В.А. Переработка отвальных шламов в качестве элементов высокотехнологичной малоотходной технологии производства глинозема из бокситов и нефелинов // Технико-экономический Вестник РУСАЛа. 2007. № 18. С. 51-56.URL:
  10. Утков В.А. Уменьшение содержания щелочей, серы и фосфора при термическом окусковании красного шлама / В.А.Утков, Л.И.Леонтьев, М.Г.Яковлев // Сталь. 2013. № 2. С.12-13.
  11. Фролов Ю.А. Метод газодинамического расчета сети агломерационных машин для реконструкции и проектирования / Ю.А.Фролов, Г.Н.Безденежный, Б.М.Баронбаев // Цветная металлургия. 2002. № 8-9. С.10-15.
  12. Ercag E. Furnace smelting and extractive metallurgy of red mud. Recovery of TiO2, Al2O3 and pig iron / E.Ercag, R.Apak
  13. // J.Chem. Technol. Biotechnol. 1997. Vol.70. P.241-246.
  14. Production of iron nuggets using iron rich red mud by direct reduction / Wang Hong, She Xue-feng, Zhao Qing-qing et al.
  15. // J. Process Eng. China. 2012. Vol.12. № 5. P.816-821 .
  16. Mohapatra B.K. Proceedings of the Technical Sessios / B.K.Mohapatra, B.K.Mishra, C.R.Mishra // TMS Annual Meeting and Exhibition. Febr. 27 – March 3, 2011. San Diego, Calif. P.140-145.
  17. Recovy of Alumina ferric oxid from Baer red mud rich in iron by reduction sintering / Li Xiao-bin, Xiao Wei, Liu Wie et al. // Trans Nonferrous Metals Soc. China. 2009. Vol.19. N 5. P.1342-1347.

Similar articles

Serpentines of chrysotile – pecoraite series as genesis indicators of nickel deposits in the Urals weathering crusts
2016 I. V. Talovina, G. Khaide
Control systems of sintering processes in rotary tubular kilns with using of thermovisors scanning
2016 Yu. V. Sharikov, T. O. Koiranen
A parallel analysis of hydrolithospheric beds geodata of Narzan mineral water Kislovodsk deposit
2016 D. A. Pervukhin, Yu. V. Ilyushin
Plateaus on hardness curves of annealed hypoeutectoid steels at ~0.5 % C as a consequence of the presence оf ~Fe42C interim phase
2016 K. Yu. Shaznazarov, E. I. Pryakhin
Development and manufacturing cycle for potassium nitrate and phosphate producing by conversion method
2016 A. I. Alekseev, B. A. Dmitrievskii
Human, nature, society: synergetic dimension
2016 N. A. Vakhnin