Methods for determination pareto set in some linear programming problems
About authors
- 1 — National Mineral Resources University (Mining University)
- 2 — National Mineral Resources University (Mining University)
Abstract
The paper describes the graphic -analytical method for the determination of Pareto set in linear programming with a restrictive condition and two performance criteria. In practical vehi-cles tasks it is common phenomenon to take decision for several performance indicators. Such problems are called multicriteria. The presented method is illustrated by numerical examples. In the final part of the article analytical method for solving multiobjective linear programming problems.
References
- Кузнецов Е.С. Управление технической эксплуатацией автомобилей М.: Транспорт, 1990. 272 с.
- Прудовский Б.Д. Количественные методы управления автомобильным транспортом. М.: Транспорт, 1976. 87 с.
- Терентьев А.В. Определение производственной программы по техническому обслуживанию и текущему ремонту для подвижного состава иностранного производства // Бюллетень транспортной информации. 2008. № 6 (156). С.34-36.
- Якунин Н.Н. Методологические основы контроля и управления техническим состоянием автомобилей в экс-плуатации: Автореферат дис. ... д-ра техн. наук. Оренбург, 2004. 37 с.
- Prudovskiy B.D., Terentiev A.V. Investigation methods for «current repairs labour-intensiveness» factor for a vehicle // Life Science Journal. 2014. N 11 (10s). P.304-306. http: // www. lifesciencesite. com / lsj/life1110s/ 055_25535 life1110s 14_307_310.pdf.
Similar articles
The development of prediction method of earth-pressure balance and earth surface settlement during tunneling with mechanized tunnel boring machines
2015 A. G. Protosenya, N. A. Belyakov, Ngok Tkhai Do
Air dustiness study, improving the means and methods of dust control during stone-cutting machines' operation
2015 M. S. Alosmanov, V. A. Mamedov, Kh. Kh. Khalilova, Ch. M. Bairamov
Docking zones of responsibility for achieving development targets of commodity companies
2015 V. L. Ulanov