Submit an Article
Become a reviewer
Vol 218
Pages:
289-295
Download volume:
RUS
Research article
Geo-nanomaterials

Multicriteria estimation of bearing capacity of geomaterials

Authors:
I. A. Brigadnov
About authors
  • Ph.D., Dr.Sci. professor Saint-Petersburg Mining University
Date submitted:
2015-08-13
Date accepted:
2015-10-29
Date published:
2016-04-22

Abstract

In the article the problem of an estimation of bearing capacity of geomaterials as a deform-able solid is considered in the current configuration, which may be as the reference (undeformed) or the actual (deformed). We propose an original variational approach to the problem for stresses in selected subdomains, in which, depending on different engineering considerations, average in-tegral values of different component of stresses are estimated and from their aggregate the bearing capacity of the current configuration of the solid is estimated regarding to given external influ-ences. In each of the selected subdomain the weakest stress field is obtained which is globally bal-anced with external influences. For example, the assessment of the average integral hydrostatic pressure is needed for study of bearing capacity of geomaterials.

Keywords:
geomaterial deformable solid bearing capacity variational problem for stresses stress concentrators multicriteria estimation
Go to volume 218

References

  1. Борщ-Компониец В.И. Практическая механика горных пород. М.: Недра, 2013. 322 с.
  2. Бригаднов И.А. Оценка несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2001. № 1. С.6-15.
  3. Бригаднов И.А. Двойственный подход к оценке несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2004. № 2. С.39-46.
  4. Клюшников В.Д. Математическая теория пластичности. М.: Изд-во МГУ, 1979. 208 с.
  5. Куфнер А. Нелинейные дифференциальные уравнения / А.Куфнер, С.Фучик. М.: Наука, 1988. 304 с.
  6. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.
  7. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.
  8. Пальмов В.А. Элементы тензорной алгебры и тензорного анализа. СПб.: Изд-во Политехн. ун-та, 2008. 109 с.
  9. Поздеев А.А. Большие упруго-пластические деформации / А.А.Поздеев, П.В.Трусов, Ю.И.Няшин. М.: Наука, 1986. 232 с.
  10. Сьярле Ф. Математическая теория упругости. М.: Мир, 1992. 472 с.
  11. Экланд И. Выпуклый анализ и вариационные задачи / И.Экланд, Р.Темам. М.: Мир, 1979. 400 с.
  12. Brigadnov I.A. Duality method in limit analysis problem of non-linear elasticity // Computer Assisted Mech. Eng. Sci. 2003. Vol.10. P.375-380.
  13. Brigadnov I.A. Limit analysis method in elastostatics and electrostatics // Math. Meth. Appl. Sci. 2005. Vol.28. P.253-273.

Similar articles

Crisis in mica production industry of the Belomorskaya pegmatite province and perspective of its overcoming
2016 N. D. Malov, V. V. Shchiptsov
Development of innovative technologies of dedusting in mining and advance coal mine faces
2016 G. I. Korshunov, S. B. Romanchenko
Energy efficient electromechanical systems of mining andtransport machines
2016 A. E. Kozyaruk
Energy- efficient control of asynchronous motor drive with current refinement of the loss minimum on the basis of fuzzy logic
2016 O. B. Shonin, V. S. Pronko
Platinum specialization of supergene nickel deposits on ultramafic massifs of the Urals
2016 I. V. Talovina
Extraction of ions of silver from hydrochloric acid solutions by tributylphosphate
2016 L. A. Voropanova, N. B. Kokoeva