Submit an Article
Become a reviewer
Vol 218
Pages:
289
Download volume:
RUS

Multicriteria estimation of bearing capacity of geomaterials

Authors:
I. A. Brigadnov
About authors
  • Saint-Petersburg Mining University
Date submitted:
2015-08-13
Date accepted:
2015-10-29
Date published:
2016-02-01

Abstract

In the article the problem of an estimation of bearing capacity of geomaterials as a deform-able solid is considered in the current configuration, which may be as the reference (undeformed) or the actual (deformed). We propose an original variational approach to the problem for stresses in selected subdomains, in which, depending on different engineering considerations, average in-tegral values of different component of stresses are estimated and from their aggregate the bearing capacity of the current configuration of the solid is estimated regarding to given external influ-ences. In each of the selected subdomain the weakest stress field is obtained which is globally bal-anced with external influences. For example, the assessment of the average integral hydrostatic pressure is needed for study of bearing capacity of geomaterials.

Go to volume 218

References

  1. Борщ-Компониец В.И. Практическая механика горных пород. М.: Недра, 2013. 322 с.
  2. Бригаднов И.А. Оценка несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2001. № 1. С.6-15.
  3. Бригаднов И.А. Двойственный подход к оценке несущей способности нелинейно упругих тел // Изв. РАН. МТТ. 2004. № 2. С.39-46.
  4. Клюшников В.Д. Математическая теория пластичности. М.: Изд-во МГУ, 1979. 208 с.
  5. Куфнер А. Нелинейные дифференциальные уравнения / А.Куфнер, С.Фучик. М.: Наука, 1988. 304 с.
  6. Лурье А.И. Нелинейная теория упругости. М.: Наука, 1980. 512 с.
  7. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.
  8. Пальмов В.А. Элементы тензорной алгебры и тензорного анализа. СПб.: Изд-во Политехн. ун-та, 2008. 109 с.
  9. Поздеев А.А. Большие упруго-пластические деформации / А.А.Поздеев, П.В.Трусов, Ю.И.Няшин. М.: Наука, 1986. 232 с.
  10. Сьярле Ф. Математическая теория упругости. М.: Мир, 1992. 472 с.
  11. Экланд И. Выпуклый анализ и вариационные задачи / И.Экланд, Р.Темам. М.: Мир, 1979. 400 с.
  12. Brigadnov I.A. Duality method in limit analysis problem of non-linear elasticity // Computer Assisted Mech. Eng. Sci. 2003. Vol.10. P.375-380.
  13. Brigadnov I.A. Limit analysis method in elastostatics and electrostatics // Math. Meth. Appl. Sci. 2005. Vol.28. P.253-273.

Similar articles

Results of the 5G borehole drilling at russian antarctic station «Vostok» and researches of ice cores
2016 N. I. Vasilev, A. N. Dmitriev, V. Ya. Lipenkov
Ways to ensure reliability, safety and efficiency of the costruction and installation works when buildings and structures erecting by stabilizing process of the rocking cargo suspension
2016 L. A. Goldobina, P. S. Orlov
Processing of alumina production red mud with recovery of scandium concentrate
2016 I. N. Pyagai, V. L. Kozhevnikov, L. A. Pasechnik, V. M. Skachkov
Analysis of charge space distribution influence on electric adhesion forces
2016 N. S. Pshchelko
Development of innovative technologies of dedusting in mining and advance coal mine faces
2016 G. I. Korshunov, S. B. Romanchenko
The method for synthesis of power supply system topology of mineral resources enterprises on the basis of logical and probabilistic assessments
2016 B. N. Abramovich, S. V. Baburin