Association of greisens (zwitters) and tourmalinites in the granites of the Severny pluton (Chukotka, Russia)
- 1 — Ph.D., Dr.Sci. Professor Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus ▪ ResearcherID
- 2 — Ph.D., Dr.Sci. Professor Empress Catherine ΙΙ Saint Petersburg Mining University ▪ Orcid ▪ Elibrary ▪ Scopus
- 3 — Ph.D. Associate Professor Lomonosov Moscow State University ▪ Orcid
Abstract
In the Severny pluton in Chukotka, an association of rare-metal, tin-bearing topaz-zinnwaldite greisens (zwitters) and tourmaline metasomatites has been identified through geological mapping and mineralogical-petrographic studies. These formations are genetically linked to magmatism producing Li-F granite intrusions. The distribution and composition of zwitters and muscovite-quartz-tourmaline metasomatites forming halos around quartz-tourmaline veins were investigated. A wide spectrum of tourmaline mineral species was established, occurring in pegmatoid pockets of leucogranites (tourmaline I), pre-ore quartz-tourmaline metasomatite veins with fluorite (tourmaline II), early ore quartz-tourmaline metasomatite veins (tourmaline III), and ore tourmaline and quartz veins (tourmaline IV). An evolution of tourmaline from Sc-bearing fluor-schorl in pre-ore metasomatites to oxy-schorl and tin-bearing ferro-bosiite in tin-ore metasomatites was revealed, with a gradual increase in lithium content and variable iron oxidation state. In zwitters, muscovite-quartz-tourmaline metasomatites, and tourmalinite veins, a combination of tin and rare-metal mineralization is noted. The research results can be used to assess the metallogenic potential and develop criteria for forecasting rare-metal (Nb, Ce, Y, W, Bi) mineralization in the Severny pluton.
Funding
The study was carried out with financial support from the Russian Foundation for Basic Research (projects 11-05-00868-а, 14-05-00364, 20-15-50064), and the Ministry of Education and Science of Russia (State Contract N 14.740.11.0192, State assignment N 5.2115.2014/K).
References
- State Report on the State and Use of Mineral Resources of the Russian Federation in 2020. Мoscow: Rosnedra, 2021, p. 572.
- Litvinenko V.S., Petrov E.I., Vasilevskaya D.V. et al. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023. Vol. 259, p. 95-111. DOI: 10.31897/PMI.2022.100
- Artemiev D.S., Krymsky R.Sh., Belyatsky B.V., Ashikhmin D.S. The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating. Journal of Mining Institute. 2020. Vol. 243, p. 266-278. DOI: 10.31897/PMI.2020.3.266
- Dashko R.E., Romanov I.S. Forecasting of mining and geological processes based on the analysis of the underground space of the Kupol deposit as a multicomponent system (Chukotka Autonomous Region, Anadyr district). Journal of Mining Institute. 2021. Vol. 247, p. 20-32. DOI: 10.31897/PMI.2021.1.3
- Evdokimov A.N., Fokin V.I., Shanurenko N.K. Gold-rare metal and associated mineralization in the western part of Bolshevik Island, Severnaya Zemlya archipelago. Journal of Mining Institute. 2023. Vol. 263, p. 687-697. DOI: 10.31897/PMI.2022.94
- Geodynamics, magmatism and metallogeny of the Russian East. In 2 books. Book 1. Ed by A.I.Khanchuk. Vladivostok: Dalnauka, 2006, p. 527 (in Russian).
- Rizvanova N.G., Alenicheva A.A., Skublov S.G. et al. Early Ordovician Age of Fluorite-Rare-Metal Deposits at the Voznesensky Ore District (Far East, Russia): Evidence from Zircon and Cassiterite U–Pb and Fluorite Sm–Nd Dating Results. Minerals. 2021. Vol. 11. Iss. 11. N 1154. DOI: 10.3390/min11111154
- Kovalenko V.I., Kuzmin M.I., Kozlov V.D., Vladykin N.V. Metasomatic zwitters and associated rare-metal mineralization (exemplified by deposits of Mongolia and Czechoslovakia). Metasomatizm i rudoobrazovanie. Мoscow: Nauka, 1974, p. 42-53.
- Borodkin N.A., Pristavko V.A. Petrochemical and geochemical criteria of zwitter classification. Otechestvennaya geologiya. 2012. N 4, p. 49-56 (in Russian).
- Tomson I.N., Tananaeva G.A. Basic formation of tin-bearing zwitters and their relationship with accompanying vein deposits. Etapy obrazovaniya rudnykh formatsii. Мoscow: Nauka, 1989, p. 72-78.
- Plyushchev E.V., Shatov V.V., Kashin S.V. Metallogeny of Hydrothermal-Metasomatic Formations. St. Petersburg: VSEGEI, 2012, p. 560.
- Plyushchev E.V., Ushakov O.P., Shatov V.V., Belyaev G.M. Methods for Studying Hydrothermal-Metasomatic Formations. Leningrad: Nedra, 1981, p. 262.
- Voitekhovsky Y.L., Zakharova A.A. Petrographic structures and Hardy – Weinberg equilibrium. Journal of Mining Institute. 2020. Vol. 242, p. 133-138. DOI: 10.31897/PMI.2020.2.133
- Marin Yu.B. On Mineralogical Studies and the Use of Mineralogical Information in Solving Petro- and Ore Genesis Problems. Geology of Ore Deposits. 2021. Vol. 63. N 7, p. 625-633. DOI: 10.31857/S0869605520040048
- Krivovichev V.G., Gulbin Yu.L. Recommendations for mineral formula calculations from chemical analytical data. Proceedings of the Russian Mineralogical Society. 2022. Vol. 151. N 1, p. 114-124 (in Russian). DOI: 10.31857/S0869605522010087
- Loufouandi Matondo I.P., Ivanov M.A. Composition and probable ore igneous rocks source of columbite from alluvial deposits of Mayoko district (Republic of the Congo). Journal of Mining Institute. 2020. Vol. 242, p. 139-149. DOI: 10.31897/PMI.2020.2.139
- Gawad A.E.A., Ene A., Skublov S.G. et al. Trace Element Geochemistry and Genesis of Beryl from Wadi Nugrus, South Eastern Desert, Egypt. Minerals. 2022. Vol. 12. Iss. 2. N 206. DOI: 10.3390/min12020206
- Gvozdenko T.A., Baksheev I.A., Khanin D.A. et al. Iron-bearing to iron-rich tourmalines from granitic pegmatites of the Murzinka pluton, Central Urals, Russia. Mineralogical Magazine. 2022. Vol. 86. Iss. 6, p. 948-965. DOI: 10.1180/mgm.2022.104
- Grigorev D.P. Ontogeny of Minerals. Lvov: Izd-vo Lvovskogo universiteta, 1961, p. 284.
- Chun-Ming Wu, Hong-Xu Chen. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites. Science Bulletin. 2015. Vol. 60. Iss. 1, p. 116-121. DOI: 10.1007/s11434-014-0674-y
- Rieder M., Cavazzini G., Dyakonov Y.S. et al. Nomenclature of the Micas. Clays and clay minerals. 1998. Vol. 46. Iss. 5, p. 586-595. DOI: 10.1346/CCMN.1998.0460513
- Henry D.J., Novák M., Hawthorne F.C. et al. Nomenclature of the tourmaline-supergroup minerals. American Mineralogist. 2011. Vol. 96. Iss. 5-6, p. 895-913. DOI: 10.2138/am.2011.3636
- State Geological Map of the Russian Federation. Scale 1:1,000,000 (New Series). Sheet R-58-(60) – Bilibino. Explanatory Note. St. Petersburg: VSEGEI, 1999, p. 146.
- Kurguzova A.V. Formation Conditions of Zwitters and Tourmalinites of the Severny Massif (Chukotka): Avtoref. dis. … kand. geol.-mineral. nauk. St. Petersburg: Natsionalnyi mineralno-syrevoi universitet “Gornyi”, 2014, p. 20.
- Warr L.N. IMA–CNMNC approved mineral symbols. Mineralogical Magazine. 2021. Vol. 85. Iss. 3, p. 291-320. DOI: 10.1180/mgm.2021.43
- Dudkinskii D.V., Efremov S.V., Kozlov V.D. Lithium-Fluorine Granites of Chukotka and Their Geochemical Features. Geokhimiya. 1994. N 3, p. 393-402.
- Alekseev V.I., Marin Yu.B., Gembitskaya I.M. Allanite-(Y) and allanite-(Ce) paragenesis in tourmalinite of the Severnyi pluton, Chukchi Peninsula, and the relationship between yttrium and lanthanides in allanite. Geology of Ore Deposits. 2016. Vol. 58. N 6, p. 674-680. DOI: 10.1134/S107570151608002X
- Dobson D.C. Geology and alteration of the Lost River tin-tungsten-fluorine deposit, Alaska. Economic Geology. 1982. Vol. 77. N 4, p. 1033-1052. DOI: 10.2113/gsecongeo.77.4.1033
- Soloviev S.G., Kryazhev S., Dvurechenskaya S. Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect, Seward Peninsula, Alaska, USA. Mineralium Deposita. 2020. Vol. 55. Iss. 1, p. 79-106. DOI: 10.1007/s00126-019-00883-7
- Duchoslav M., Marks M.A.W., Drost K. et al. Changes in tourmaline composition during magmatic and hydrothermal processes leading to tin-ore deposition: The Cornubian Batholith, SW England. Ore Geology Reviews. 2017. Vol. 83, p. 215-234. DOI: 10.1016/j.oregeorev.2016.11.012
- Dehaine Q., Filippov L.O., Glass H.J., Rollinson G. Rare-metal granites as a potential source of critical metals: A geometallurgical case study. Ore Geology Reviews. 2019. Vol. 104, p. 384-402. DOI: 10.1016/j.oregeorev.2018.11.012
- Seifert Th., Кemре U. Sn-W-Lagerstatten und spatvariszische Magmatite des Erzgebirges. Beiheft zu European Journal of Mineralogy. 1994. Vol. 6. N 2, p. 125-172.
- Štemprok M., Pivec E., Langrová A. The petrogenesis of a wolframite-bearing greisen in the Vykmanov granite stock, Western Krušné hory pluton (Czech Republic). Bulletin of Geosciences. 2005. Vol. 80. N 3, p. 163-184.
- Marignac C., Cuney M., Cathelineau M. et al. The Panasqueira Rare Metal Granite Suites and Their Involvement in the Genesis of the World-Class Panasqueira W–Sn–Cu Vein Deposit: A Petrographic, Mineralogical, and Geochemical Study. Minerals. 2020. Vol. 10. Iss. 6. N 562. DOI: 10.3390/min10060562
- Gracheva O.S. Greisens of the Northeast USSR. Мoscow: Nedra, 1974, p. 172.
- Rundkvist D.V., Denisenko V.K., Pavlova I.G. Greisen Deposits (Ontogeny and Phylogeny). Мoscow: Nedra, 1970, p. 328.
- Badanina E.V., Syritso L.F., Volkova E.V. et al. Composition of Li–F Granite Melt and Its Evolution during the Formation of the OreBearing Orlovka Massif in Eastern Transbaikalia. Petrology. 2010. Vol. 18. N 2, p. 131-157. DOI: 10.1134/S0869591110020037
- Kuznetsov V.A., Andreeva I.A., Kovalenko V.I. et al. Abundance of water and trace elements in the ongonite melt of the Ary-Bulak massif, eastern Transbaikal region: Evidence from study of melt inclusions. Doklady Earth Sciences. 2004. Vol. 396. N 4, p. 571-576.
- Webster I., Thomas R., Förster H.-J. et al. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita. 2004. Vol. 39. Iss. 4, p. 452-472. DOI: 10.1007/s00126-004-0423-2
- Bhalla P., Holtz F., Linnen R.L., Behrens H. Solubility of cassiterite in evolved granitic melts: effect of T, fO2, and additional volatiles. Lithos. 2005. Vol. 80. Iss. 1-4, p. 387-400. DOI: 10.1016/j.lithos.2004.06.014
- Schmidt S., Gottschalk M., Rongqing Zhang, Jianjun Lu. Oxygen fugacity during tin ore deposition from primary fluid inclusions in cassiterite. Ore Geology Reviews. 2021. Vol. 139. Part A. N 104451. DOI: 10.1016/j.oregeorev.2021.104451