Подать статью
Стать рецензентом
Том 267
Страницы:
444-452
Скачать том:

Оценка эффективности использования осадка сточных вод для рекультивации нарушенных территорий в Кольской субарктике (на примере песчаного карьера)

Авторы:
Л. А. Иванова1
М. В. Слуковская2
Е. А. Красавцева3
Об авторах
  • 1 — д-р биол. наук главный научный сотрудник Полярно-альпийский ботанический сад-институт им. Н.А.Аврорина КНЦ РАН ▪ Orcid
  • 2 — канд. биол. наук старший научный сотрудник Лаборатория природоподобных технологий и техносферной безопасности Арктики ЦНМ КНЦ РАН ▪ Orcid
  • 3 — канд. техн. наук научный сотрудник Институт проблем промышленной экологии Севера КНЦ РАН ▪ Orcid
Дата отправки:
2024-04-01
Дата принятия:
2024-06-03
Дата публикации:
2024-07-04

Аннотация

Дана оценка эффективности рекультивационных мероприятий с применением осадка сточных вод для ускоренного формирования устойчивого противоэрозионного растительного покрова на малопродуктивном техногрунте песчаного карьера в условиях Кольского Севера. Схема эксперимента, заложенного в 2017 г., включала три варианта: контрольный – без мелиоранта, опытный 1 – фрагментарное (50 %) нанесение осадка сточных вод, опытный 2 – сплошное нанесение. На шестой вегетационный сезон были проанализированы пробы техноземов и проведены измерения эмиссии СО 2 . Показано, что использование осадка сточных вод оказывает положительный эффект на физико-химические и агрохимические свойства грунтов: снижаются рН и плотность в его естественном залегании, повышается гигроскопичность, растет содержание доступных фосфора и калия. Выявлены достоверные отличия ( р < 0,05) между эмиссиями СО 2 в контрольном и опытных вариантах. Содержание органического углерода в контрольном было ниже, чем в опытных вариантах, при фрагментарном нанесении осадка сточных вод в три раза, при сплошном – в девять раз. Также выявлены достоверные ( p < 0,05) различия в содержании углерода и азота в вытяжках холодной и горячей воды между образцами контрольного и опытного варианта со сплошным нанесением осадка сточных вод. Вместе с тем, путем расчета отношения C/N установлен очень низкий уровень обогащенности гумуса азотом. Определены основные факторы, обуславливающие изменчивость оцениваемых параметров – применение мелиоранта и способ его нанесения, вклад применения составил 60 %, вклад способа – 14 %. С учетом экономической составляющей рекомендуется фрагментарное нанесение осадка сточных вод на техногрунт песчаного карьера для создания устойчивого противоэрозионного фитоценоза.

Ключевые слова:
ландшафт песчаный карьер технозем мелиорант осадок сточных вод эмиссия СО2
Перейти к тому 267

Литература

  1. Даббаг А. Изучение свойств растений песчаных карьеров Московской области для восстановления растительности песчаных карьеров // Вестник Российского университета дружбы народов. Серия: Экология и безопасность жизнедеятельности. 2018. Т. 26. № 3. С. 299-308. DOI: 10.22363/2313-2310-2018-26-3-299-308
  2. Gentili R., Casati E., Ferrario A. et al. Vegetation cover and biodiversity levels are driven by backfilling material in quarry restoration // CATENA. 2020. Vol. 195. № 104839. DOI: 10.1016/j.catena.2020.104839
  3. Мосейкин В.В., Гальперин А.М., Ермолов В.А., Круподеров В.С. Анализ ситуации с горнопромышленными отходами (геоэкологические аспекты) // Горный информационно-аналитический бюллетень. 2013. № S1. С. 7-23.
  4. Li Wang, Bin Ji, Yuehua Hu et al. A review on in situ phytoremediation of mine tailings // Chemosphere. 2017. Vol. 184. P. 594-600. DOI: 10.1016/j.chemosphere.2017.06.025
  5. Иванова Н.А. Биологическая рекультивация песчаных карьеров Марийского Заволжья созданием лесных культур сосны обыкновенной (Pinus sylvestris L.): Автореф. дис. … канд. с.-х. наук. Йошкар-Ола: Поволжский государственный технологический университет, 2020. 21 с.
  6. Осипенко Р.А., Зарипов Ю.В., Белов Л.А., Морозов А.Е. Опыт рекультивации песчаных карьеров в северной подзоне тайги // Леса России и хозяйство в них. 2020. № 4 (75). С. 12-19. DOI: 10.51318/FRET.2020.40.90.002
  7. Копцик Г.Н., Копцик С.В., Смирнова И.Е. Альтернативные технологии ремедиации техногенных пустошей в Кольской Субарктике // Почвоведение. 2016. № 11. С. 1375-1391. DOI: 10.7868/S0032180X16090082
  8. Лусис А.В., Иванова Л.А., Горбачева Т.Т., Румянцева А.В. Формирование противоэрозионного растительного покрова на песчаном карьере в условиях Арктики с помощью осадка сточных вод // Горные науки и технологии. 2023. Т. 8. № 3. С. 223-231. DOI: 10.17073/2500-0632-2023-01-73
  9. Garbini G.L., Caracciolo A.B., Rolando L. et al. Effects of municipal waste compost on microbial biodiversity and energy production in terrestrial microbial fuel cells // New Biotechnology. 2023. Vol. 78. P. 131-140. DOI: 10.1016/j.nbt.2023.10.009
  10. Asemaninejad A., Langley S., Mackinnon T. et al. Blended municipal compost and biosolids materials for mine reclamation: Long-term field studies to explore metal mobility, soil fertility and microbial communities // Science of The Total Environment. 2021. Vol. 760. № 143393. DOI: 10.1016/j.scitotenv.2020.143393
  11. Shengguo Xue, Feng Zhu, Xiangfeng Kong et al. A review of the characterization and revegetation of bauxite residues (Red mud) // Environmental Science and Pollution Research. 2016. Vol. 23. Iss. 2. P. 1120-1132. DOI: 10.1007/s11356-015-4558-8
  12. Asensio V., Covelo E.F., Kandeler E. Soil management of copper mine tailing soils – Sludge amendment and tree vegetation could improve biological soil quality // Science of The Total Environment. 2013. Vol. 456-457. P. 82-90. DOI: 10.1016/j.scitotenv.2013.03.061
  13. Novo L.A.B., Covelo E.F., González L. The use of waste-derived amendments to promote the growth of Indian mustard in copper mine tailings // Minerals Engineering. 2013. Vol. 53. P. 24-30. DOI: 10.1016/j.mineng.2013.07.004
  14. Lingyan Zhou, Zhaolong Li, Wen Liu et al. Restoration of rare earth mine areas: organic amendments and phytoremediation // Environmental Science and Pollution Research. 2015. Vol. 22. Iss. 21. P. 17151-17160. DOI: 10.1007/s11356-015-4875-y
  15. Lin Zhang, Wen Liu, Shenghong Liu et al. Revegetation of a barren rare earth mine using native plant species in reciprocal plantation: effect of phytoremediation on soil microbiological communities // Environmental Science and Pollution Research. 2020. Vol. 27. Iss. 2. P. 2107-2119. DOI: 10.1007/s11356-019-06645-2
  16. Копцик Г.Н., Смирнова И.Е., Копцик С.В. и др. Эффективность ремедиации почв техногенных пустошей вблизи комбината «Североникель» на Кольском полуострове // Вестник Московского университета. Серия 17. Почвоведение. 2015. № 2. С. 42-48.
  17. Виноградов Д.В., Василева В.М., Макарова М.П. и др. Агроэкологическое действие осадка сточных вод и его смесей с цеолитом на агроценозы масличных культур // Теоретическая и прикладная экология. 2019. № 3. С. 127-133. DOI: 10.25750/1995-4301-2019-3-127-133
  18. Asensio V., Vega F.A., Andrade M.L., Covelo E.F. Technosols Made of Wastes to Improve Physico-Chemical Characteristics of a Copper Mine Soil // Pedosphere. 2013. Vol. 23. Iss. 1. P. 1-9. DOI: 10.1016/S1002-0160(12)60074-5
  19. Петрова Т.А., Рудзиш Э. Рекультивация техногенно-нарушенных земель с применением осадков сточных вод в качестве мелиорантов // Записки Горного института. 2021. Т. 251. С. 767-776. DOI: 10.31897/PMI.2021.5.16
  20. Пуртова Л.Н., Костенков Н.М., Семаль В.А., Комачкова И.В. Эмиссия углекислого газа из почв природных и антропогенных ландшафтов юга Приморья // Фундаментальные исследования. 2013. № 1. Ч. 3. С. 585-589.
  21. Иванова Л.А., Лусис А.В., Горбачева Т.Т., Красавцева Е.А. Пора восстанавливать Арктику. Использование отходов производства и потребления региональных водопроводно-канализационных хозяйств для реабилитации нарушенных ландшафтов. Апатиты: Кольский научный центр РАН, 2023. 77 с. DOI: 10.37614/978.5.91137.494.5
  22. Шмакова Н.Ю., Иванова Л.А., Ермолаева О.В., Лусис А.В. Фотосинтетическая продуктивность искусственно созданных фитоценозов с применением осадка сточных вод // Маркшейдерия и недропользование. 2023. № 3 (125). С. 60-68. DOI: 10.56195/20793332_2023_3_60_68
  23. Hamkalo Z., Bedernichek T. Total, cold and hot water extractable organic carbon in soil profile: impact of land-use change // Zemdirbyste-Agriculture. 2014. Vol. 101. № 2. P. 125-132. DOI: 10.13080/z-a.2014.101.016
  24. Корнейкова М.В., Васенев В.И., Салтан Н.В. и др. Анализ эмиссии СО2 городскими почвами в условиях Крайнего Севера // Почвоведение. 2023. № 11. С. 1385-1399. DOI: 10.31857/S0032180X23600373
  25. Mikha M.M., Benjamin J.G., Stahlman P.W., Geier P.W. Remediation/Restoration of Degraded Soil: I. Impact on Soil Chemical Properties // Agronomy Journal. 2014. Vol. 106. Iss. 1. P. 252-260. DOI: 10.2134/AGRONJ2013.0278
  26. Хордан М.М., Бек Дж., Гарсия-Санчес Э., Гарсия-Оренес Ф. Анализ объемной плотности и агрегатной устойчивости в перколяционных колоннах // Записки Горного института. 2016. Т. 222. С. 877-881. DOI: 10.18454/PMI.2016.6.877
  27. Matiasek S.J., Pellerin B.A., Spencer R.G.M. et al. Water-soluble organic carbon release from mineral soils and sediments in an irrigated agricultural system // Journal of Environmental Management. 2023. Vol. 343. № 118184. DOI: 10.1016/j.jenvman.2023.118184
  28. Бобрик А.А. Закономерности эмиссии парниковых газов почвами северотаежных и лесотундровых экосистем Западной Сибири: Автореф. дис. … канд. биол. наук. М.: Московский государственный университет им. М.В.Ломоносова, 2016. 26 с.
  29. Singh A.K., Kumar S., Kalambukattu J.G. Assessing aggregate stability of soils under various land use/land cover in a watershed of Mid-Himalayan Landscape // Eurasian Journal of Soil Science. 2019. Vol. 8. Iss. 2. P. 131-143. DOI: 10.18393/ejss.514319
  30. Хлыстов И.А. Углерод и азот органических соединений почвы в условиях загрязнения выбросами медеплавильного завода // Вестник Красноярского государственного аграрного университета. 2015. № 5. С. 17-22.
  31. Šeremešić S., Milošev D., Sekulić P. et al. Total and hot-water extractable carbon relationship in chernozem soil under different cropping systems and land use // Journal of Central European Agriculture. 2013. Vol. 14. Iss. 4. P. 1496-1504. DOI: 10.5513/JCEA01/14.4.1382
  32. Ortner M., Seidel M., Semella S. et al. Content of soil organic carbon and labile fractions depend on local combinations of mineral-phase characteristics // SOIL. 2022. Vol. 8. Iss. 1. P. 113-131. DOI: 10.5194/soil-8-113-2022
  33. Шамрикова Е.В., Кубик О.С., Денева С.В., Пунегов В.В. Состав водорастворимой фракции почв побережья Баренцева моря: органический углерод и азот, низкомолекулярные компоненты // Почвоведение. 2019. № 11. С. 1322-1338. DOI: 10.1134/S0032180X19110108
  34. Карелин Д.В., Замолодчиков Д.Г., Зукерт Н.В. и др. Межгодовые изменения ФАР и влажности почвы в теплый сезон могут быть важнее для направления годового углеродного баланса в тундрах, чем колебания температуры // Журнал общей биологии. 2013. Т. 74. № 1. С. 3-22.
  35. Гончарова О.Ю., Семенюк О.В., Матышак Г.В., Богатырев Л.Г. Биологическая активность городских почв: пространственная вариабельность и определяющие факторы // Почвоведение. 2022. № 8. С. 1009-1022. DOI: 10.31857/S0032180X22080032
  36. Xiaomei Chen, Muying Liu, Zhanying Xu, Hui Wei. Influences of temperature and moisture on abiotic and biotic soil CO2 emission from a subtropical forest // Carbon Balance and Management. 2021. Vol. 16. № 18. DOI: 10.1186/s13021-021-00181-8

Похожие статьи

Оценка эффективности очистки кислых шахтных вод (на примере медноколчеданных рудников Среднего Урала)
2024 Л. С. Рыбникова, П. А. Рыбников, В. Ю. Наволокина
Возможность рекультивации шламонакопителей малых объемов с использованием осадков водоподготовки
2024 О. М. Гуман, И. А. Антонова
Получение и применение комплексного титансодержащего коагулянта из кварц-лейкоксенового концентрата
2024 Е. Н. Кузин
Обоснование возможности применения отходов производства гуминовых препаратов для очистки сточных вод от металлов (Cd2+, Zn2+, Mg2+, Cu2+) с целью разработки эффективных мероприятий по экологической реабилитации
2024 Н. Ю. Антонинова, А. В. Собенин, А. И. Усманов, А. А. Горбунов
Природные углеродные матрицы на основе бурого угля, выделенных из него гуминовых кислот и гумина для очистки водных растворов от низкомолекулярных органических примесей
2024 С. О. Карабаев, А. В. Харченко, И. П. Гайнуллина, В. А. Кудрявцева, Т. Д. Шигаева
Количественное определение форм серы в донных отложениях для экспресс-оценки влияния промышленных объектов на водные экосистемы
2024 И. П. Сверчков, В. Г. Поваров