Submit an Article
Become a reviewer
Vol 1 Iss. 2
Pages:
92-93
Download volume:
RUS
Article

New derivation of the Wallis formula

Authors:
Ye. К. Mitkevich-Volchassky
Date submitted:
1907-12-16
Date accepted:
1908-02-15
Date published:
1908-06-01

Abstract

This note examines the expression of the length of the arcs of an ellipse and a hyperbola using infinite series (see article). Adding all these equalities and making reductions, we obtain the following formula, which is nothing more than the Wallis formula. The same result could be obtained by finding the arc length of the hyperbola.

Область исследования:
(Archived) Without section
Go to volume 1

Similar articles

The crystalline state is the only internal state of matter
1908 P. P. Von Weymarn
About the limiting cases of the Riemann function
1908 M. I. Akimov
A note about remainder term of the Taylor's series
1908 I. P. Dolbnya
Interesting samples of potassium feldspars in the Museum of the Mining Institute
1908 Ye. S. Fedorov
Sketches on the geometry of spheres
1908 Ye. S. Fedorov
Collinear systems in a perspective position, but not involution
1908 Ye. S. Fedorov