Теоретический анализ динамики ледопородного ограждения при переходе на пассивный режим замораживания
- 1 — д-р техн. наук научный сотрудник Горный институт Уральского отделения Российской академии наук
- 2 — д-р техн. наук зав. отделом Горный институт Уральского отделения Российской академии наук ▪ Orcid ▪ Scopus
- 3 — младший научный сотрудник Горный институт Уральского отделения Российской академии наук
Аннотация
В работе проведена серия расчетов искусственного замораживания породного массива при проходке шахтных стволов для условий строящегося калийного рудника. Численное решение получено посредством метода конечных элементов с помощью программного комплекса ANSYS. Получены численные зависимости толщины ледопородного ограждения от времени в фазах активного и пассивного замораживания для двух слоев породного массива с различными теплофизическими свойствами. Внешняя и внутренняя границы ледопородного ограждения рассчитывались двумя способами: по температуре фактического замерзания поровой воды и по температуре –8 °С, при которой проводились лабораторные измерения прочности замораживаемых горных пород. Рассмотрен нормальный режим работы замораживающей станции, а также аварийный режим, заключающийся в выходе из строя одной из замораживающих колонок. Исследовалась зависимость уменьшения толщины ледопородного ограждения в фазе пассивного замораживания от длительности фазы активного замораживания. Определено, что в аварийном режиме работы системы замораживания толщина ледопородного ограждения по изотерме –8 °С может уменьшаться на величину более 1,5 м. При этом толщина ледопородного ограждения по изотерме фактического замерзания воды практически всегда сохраняет положительную динамику. Показано, что при анализе толщины ледопородного ограждения по изотерме фактического замерзания поровой воды не представляется возможным оценить опасность аварийных ситуаций, связанных с выходом из строя замораживающих колонок.
Литература
- Vyalov S.S. Rheology of frozen soils. Moscow. Stroiizdat, 2000, p. 463 (in Russian).
- Dorman Ya.A. Special working techniques at the construction of subways. Moscow: Transport, 1981, p. 302 (in Russian).
- Karslou G., Eger D. Thermoconductivity of solids. Moscow: Nauka, 1964, p. 488 (in Russian).
- Levin L.Yu., Kolesov E.V., Semin M.A. Study of ice wall dynamics in conditions of damage to freezing columns during construction of mineshafts. Gornyi informatsionno-analiticheskii byulleten. 2016. N 11, p. 257-265 (in Russian).
- Levin L.Y., Semin M.A., Zaitsev A.V. Adjustment of Thermophysical Rock Mass Properties in Modeling Frozen Wall Formation in Mine Shafts under Construction. Journal of Mining Science. 2019. Vol. 55. N 1, p. 157-168. DOI: 10.1134/S1062739119015419
- Levin L.Y., Semin M.A., Parshakov O.S. Mathematical prediction of frozen wall thickness in shaft sinking. Journal of
- Mining Science. 2017. Vol. 53. N 5, p. 938-944. DOI: 10.1134/S1062739117052970
- Mikheev M.A. Heat transfer fundamentals. Moscow-Leningrad: Gosenergoizdat, 1956, p. 392 (in Russian).
- Palankoev I.M. Analysis of the causes for emergencies occurrence during construction of vertical shafts by the method of artificial freezing of soils. Bezopasnost truda v promyshlennosti. 2014. N 2, p. 49-53 (in Russian).
- Pugin A.V. Optimization of ice holding stage during construction of mineshafts under the protection of ice walls. Gornoe ekho. 2019. N 1, p. 92-96. DOI: 10.7242/ESNO.2019.1.20 (in Russian).
- Nasonov I.D., Fedyukin V.A., Shuplik M.N., Resin V.I. Technology of underground structures construction. Special construction methods. Moscow: Nedra, 1992, p. 351 (in Russian).
- Trupak N.G. Soils freezing in underground construction. Moscow: Nedra, 1974, p. 280 (in Russian).
- Liu B., Ma Y., Sheng H., Deng H., Han Q., Cao Y. Experimental study on mechanical properties of Cretaceous red sandstone under different freezing temperatures and confining pressures. Chinese Journal of Rock Mechanics and Engineering. 2019. Vol. 38. Iss. 3, p. 455-466. DOI: 10.13722/j.cnki.jrme.2018.0780
- Hentrich N., Franz J. About the application of conventional and advanced freeze circle design methods for the Ust-JaFWa freeze shaft project. Vertical and Decline Shaft Sinking. Good Practices in Technique and Technology. International Mining Forum. Leiden: CRC Press/Balkema, 2015, p. 89-104.
- Alzoubi M.A., Sasmito A.P., Madiseh A., Hassani F.P. Intermittent Freezing Concept for Energy Saving in Artificial Ground Freezing Systems. Energy Procedia. 2017. Vol. 142, p. 3920-3925. DOI: 10.1016/j.egypro.2017.12.297
- Yao Z., Cai H., Xue W., Wang X., Wang Z. Numerical simulation and measurement analysis of the temperature field of artificial freezing shaft sinking in Cretaceous strata. AIP Advances. 2019. Vol. 9. N 2. 025209. DOI: 10.1063/1.5085806
- Pimentel E., Papakonstantinou S., Anagnostou G. Numerical interpretation of temperature distributions from three ground freezing applications in urban tunneling. Tunnelling and Underground Space Technology. 2012. Vol. 28, p. 57-69. DOI: 10.1016/j.tust.2011.09.005
- Rouabhi A., Jahangir E., Tounsi H. Modeling heat and mass transfer during ground freezing taking into account the salinity of the saturating fluid. International Journal of Heat and Mass Transfer. 2018. Vol. 120, p. 523-533. DOI: 10.1016/j.ijheatmasstransfer.2017.12.065
- Sheng T.-B., Wei S.-Y. Measurement and engineering application of temperature field multiple-ring hole frozen wall in extra-thick clay strata. Chinese Journal of Geotechnical Engineering. 2012. Vol. 34. N 8, p. 1516-1521.
- Shcherban P., Razumovich S., Eliseev A. Sinking of vertical mine openings in unstable, water-bearing strata using mobile hydraulic complex. Proceedings of International Conference on Management – Economics – Ethics – Technology (MEET 2017), 21-22 September 2017, Zarbrze, Poland, 2017, p. 97-106.