Использование спеченного сорбента для удаления сероводорода из отходящего промышленного газа при грануляции металлургических шлаков
- 1 — Санкт-Петербургский горный университет
- 2 — Санкт-Петербургский горный университет
- 3 — Санкт-Петербургский горный университет
Аннотация
Удаление сероводорода из горячего промышленного газа предлагается производить при температуре 200-300 °C с последующим взаимодействием с Fe 2 O 3 . Для этого были предложены сорбенты: смеси оксида железа и летучей золы; оксида железа и пемзы; нескольких образцов красного шлама (остатки обработки бокситов, который также содержит оксид железа). Для предотвращения образования пыли и потери поглощающей способности сорбенты были сформированы в пористые гранулы с присутствием других металлических оксидов. Материалы, используемые в этом исследовании, получали следующим способом: смешиванием Fe 2 O 3 с летучей золой; путем спекания смеси и красных шламов. Смесь содержит оксид алюминия и диоксид кремния, которые могут действовать как матричные формирователи и оксиды щелочных металлов, а также как флюсы для снижения температуры при спекании материалов. После насыщения образцов серой сорбент помещали в емкость для продувания, где при температуре 600-700 °C протекала десорбция до первоначального свежего состояния пропусканием воздуха через слой сорбента. В процессе этой операции освобождался диоксид серы и повторно образовывались реакционно-способные оксиды металлов. В ходе десорбции появилось небольшое количество элементарной серы и серной кислоты. Абсорбционная способность была получена при более высоких температурах, эффективность удаления H 2 S составляла от 95 до 99,9 %. Данную технологию очистки воздуха рекомендуется использовать на металлургических участках с повышенным атмосферным загрязнением, таких как грануляция расплавленных доменных шлаков.
Литература
- Glinskaya I.V., Gorbunov V.B., Podgorodetskii G.S., Teselkina A.E. Analytical Control of the Metallurgic Process of Red Mud Processing. Izvestiya vuzov. Chernaya metallurgiya. 2013. N 9, p. 25-29 (in Russian).
- Arbuzov B.A., Isanova B.X., Belyakova M.O. Flue Gas Cleaning from Sulfur and Nitrogen Oxides at Power Plants. Lit'e i metallurgiya. 2009. N 3 (52), p. 99-103 (in Russian).
- Bokovikova T.N., A.A.Nekrasova, N.M.Privalova Thermodynamic and Kinetic Sorption Characteristics of Heavy Metal Ions on a Modified Non-Organic Sorbent in the Sinks of Food Industry Plants. Izvestiya vuzov. Pishchevaya tekhnologiya. 2012. N 5-6, p. 85-89 (in Russian).
- Zainullin L.A., Sukhobaevskii Yu.Ya., Davydov A.A. The Application of Pre-Furnace Granulation in Non-Ferrous Metallurgy. Stal'. 2000. N 3, p. 18-20 (in Russian).
- Kuznetsov Yu.M., Zainullin L.A. New Approach to the Preparation of Limestone Suspension for the Systems of Wet Gas Desulfurization. Stal'. 2005. N 3, p. 118-120 (in Russian).
- Ladygichev M.G., Chizhikova B.M. Raw Materials in the Iron and Steel Industry: Manual. 2 volumes. Ecology of Maetallurgic Production. Moscow: Teploenergetik. 2002, p. 448 (in Russian).
- Li T.S., Choi I.S., Son V.E. Technology of Ladle Slag Recycling. Chernye metally. 2004. N 5, p. 28-33 (in Russian).
- Memoli F., Guzzon M. Furnace By-Products Recycling by Injection into Electric Arc Furnace – Experience and Prospects. Chernye metally. 2007. N 4, p. 26-33 (in Russian).
- Mozharenko N.M., Paranosenkov A.A., Evglevskii V.S. Slag-Forming Role of Red Mud. Fundamental'nye i prikladnye problemy chernoi metallurgii. 2004. N 9, p. 61-66 (in Russian).
- Pegova S.A., Soloboeva I.S. Environmentally Friendly Production: Approaches, Estimation, Recommendations. Ekaterinburg: IRA-UTK. 2000, p. 392 (in Russian).
- Sovetkin V.L., Yaroshenko Yu.G., Karelov S.V., Kobernichenko V.G., Khodorovskaya I.Yu. Environmental Measures
- in Metallurgy. Ural'skii tekhnicheskii universitet. Ekaterinburg, 2004, p. 240 (in Russian).
- Sennik A.I., Milyukov S.V., Proshkina O.B. H2S Emissions in the Process of External Granulation of Blast Furnace Slag. Vestnik MGTU im. G.N.Nosova. 2008. N 3, p. 75-79 (in Russian).
- Sorokin Yu.V., Demin B.L. Environmental and Technological Aspects of Steel-Smelting Slag Recycling. Chernaya metallurgiya. 2003. N 3, p. 75-79 (in Russian).
- Toropov E.V., Makarov D.P. Complex Management of Energy- and Resource-Saving Activities of the Metallurgic Plant. Vestnik Ural'skogo tekhnicheskogo universiteta. 80 let Ural'skoi teploenergetike. Obrazovanie. Nauka: Sb. tr. Mezhdunar. nauch.-tekhn. konf. UGTU – UPI. Ekaterinburg, 2003, p. 258-261 (in Russian).
- Shkol'nik Ya.Sh., Shakurov A.G., Mandel' M.Z. New Technology and Equipment for Molten Slag Processing. Metallurg. 2011. N 10, p. 58-60 (in Russian).
- Zainullin L.A., Bychkov A.V., Chechenin G.I., Reutov V.N., Prokof'eva L.P. Energy-Saving Technology of Blast Furnace Slag Recycling. Metallurgicheskaya teplotekhnika: Sb. nauch. tr. Natsional'naya metallurgicheskaya akademiya Ukrainy. Dnepropetrovsk, 2002. Vol. 7, p. 166-168 (in Russian).
- Utkov V.A., Petrov S.I., Nikolaev S.A. et al. Economic and Environmental Potential of Alumina Production in the Processing of Slag Tailings. Sovershenstvovanie tekhnologicheskikh protsessov polucheniya glinozema: Sb. nauch. tr.; RUSAL VAMI.
- St. Petersburg, 2005, p. 146-154 (in Russian).
- Yusfin Yu.S., Leont'ev L.I., Chernousov P.I. Industry and Environment. Moscow: Akademkniga. 2002, p. 469 (in Russian).
- Alípio Júnior, Américo Borges, Ayana Oliveira. Using a Multivariate Statistical in the Indentification of Alumina Loss
- in Red Mud. Brasil. Light Metalls. 2013. N 2, p. 87-89.