Submit an Article
Become a reviewer
A. A. Khalifa
A. A. Khalifa
Saint-Petersburg Mining University
Saint-Petersburg Mining University

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2021-02-24
  • Date accepted
    2022-04-06
  • Date published
    2022-07-13

Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow

Article preview

The reduction kinetics of serial phase transitions of iron oxides during reduction to a metallized state with different modes of technical hydrogen supply has been studied and substantiated. The results of the pellets formation when 3-5 % molasses is added to the red mud as a binding reagent are presented. The dependences of the reduction rate of iron oxides on the hydrogen flow rate are obtained. Based on the results of the experiments, a kinetic model was constructed, and with the help of X-ray phase and spectral analysis, it was proved that the agglomerates formed after heat treatment received high strength due to the adhesion of reduced iron particles with red mud particles. The use of a new type of charge materials in melting units will reduce the amount of emissions and dust fractions, as well as increase the metal yield.

How to cite: Khalifa A.A., Bazhin V.Y., Ustinova Y.V., Shalabi M.E. Study of the kinetics of the process of producing pellets from red mud in a hydrogen flow // Journal of Mining Institute. 2022. Vol. 254. p. 261-270. DOI: 10.31897/PMI.2022.18
Metallurgy and concentration
  • Date submitted
    2019-01-16
  • Date accepted
    2019-03-07
  • Date published
    2019-06-25

Sintered Sorbent Utilization for H2S Removal from Industrial Flue Gas in the Process of Smelter Slag Granulation

Article preview

Authors suggest removing hydrogen sulfide from the hot industrial gas at temperatures 200-300 °C and its subsequent interaction with Fe 2 O 3 . For this purpose the following sorbents have been proposed: a mixture of iron oxide and fly ash; iron oxide and pumice; different samples of red mud (bauxite treatment residues containing iron oxide). To prevent dusting and loss of absorbing capacity, the sorbents were shaped into porous granules with other metallic oxides. Materials utilized in the study were obtained the following way: mixing of Fe 2 O 3 with fly ash; sintering of the mixture with red mud. The blend contains aluminum oxide and silica, which can act as matrix shapers, alkali oxides and fluxing agents that reduce the temperature during metal sintering. After the samples had been saturated with sulfur, they were positioned in a venting reservoir, where under the temperature 600-700 °C desorption to the initial state occurred by means of passing an air flow through the sorbent layer. In the process of this operation, sulfur dioxide was released and reactive metal oxides re-emerged. Desorption also generated a small amount of elemental sulfur and sulfuric acid. Absorbing capacity was assessed at higher temperatures, efficiency of H 2 S removal reached 95-99.9 %. Proposed technology of air cleaning is recommended to use in metallurgic processes with elevated atmospheric pollution, e.g. granulation of melted blast-furnace slag.

How to cite: Lebedev A.B., Utkov V.A., Khalifa A.A. Sintered Sorbent Utilization for H2S Removal from Industrial Flue Gas in the Process of Smelter Slag Granulation // Journal of Mining Institute. 2019. Vol. 237. p. 292. DOI: 10.31897/PMI.2019.3.292