Submit an Article
Become a reviewer
Vol 236
Pages:
210
Download volume:

EFFECT OF CHALK THERMAL TREATMENT MODE ON ITS STRENGTH

Authors:
V. A. Lipin1
D. A. Trufanov2
About authors
  • 1 — Saint-Petersburg State University of Industrial Technologies and Design
  • 2 — LLC AMC «Explorer»
Date submitted:
2018-11-09
Date accepted:
2019-01-08
Date published:
2019-04-25

Abstract

Natural chalk is characterized by a fine-grained structure. The processing of chalk in conditions traditional for calcium carbonate baking is accompanied by its almost destruction and the formation of a huge amount of dust. The paper presents strength characteristics of chalk and chalky stone baking obtained with different temperature-time conditions of heating the raw material to a temperature of 450-600 °C. The uniaxial compression method was used to determine the strength depending on variable factors. Based on the experimental data, a model was constructed that determines the dependence of chalk strength on time and heating temperature. In the temperature range of 450-600 °C, the strength of chalk stone increases with increasing temperature and decreases with the increasing heating rate. In the process of isothermal heating, several factors will immediately affect the strength of a chalky stone: the formation and growth of calcite crystals, the evaporation of water, and the agglomeration of calcite grains. With an increase in the heating temperature from 450 to 600 °C, the average size of the crystals significantly increases and crystals with an estimated size of more than 4 microns are detected. An increase in the size of crystals is associated with an increase in their growth rate. The agglomeration of grains occurs at a temperature of 600 °C.

10.31897/pmi.2019.2.210
Go to volume 236

References

  1. Boryachek A.F., Belov I.A. A.s. 252901 SSSR. MPK S 04B 2/02. The method of preparation of chalk for lime baking. Sposob podgotovki mela dlya obzhiga na izvest'. Zayavl. 06.06.1966; opubl. 22.09.1969. Byul. 29, p. 2 (in Russian).
  2. Nekhlebaev Yu.P., Kuklin G.B., Konev V.V. et al. A.s. 867891 SSSR. MPK S 04B 1/00. The method of obtaining lime from chalk fines. Zayavl. 19.06.1979; opubl. 30.09.1981. Byul. 36, p. 3 (in Russian).
  3. Volzhenskii A.V., Burov Yu.S., Kolokol'nikov V.S. Mineral binders (technology and properties). Moscow: Stroiizdat, 1979, p. 467 (in Russian).
  4. Mountain Encyclopedia. Vol.4. Ortin – Sociosphere. Ed by. E.A.Kozlovskii; M.I.Agoshkov, L.K.Antonenko, K.KArbiev et al. Moscow: Sov. entsiklopediya. 1989, p. 623 (in Russian).
  5. Koryukov V.N., Bibanaeva S.A. Technology of lime and its use in the production of alumina. Tekhnika i tekhnologiya: novye perspektivy razvitiya. 2014. N 12, p. 117-119 (in Russian).
  6. Grinding and processing technology: Chalk baking. URL:http://pomol.club.com.ua/blog/?p=2843 (date of access 19.06.2017) (in Russian).
  7. Trufanov D.A., Lipin V.A. Investigation of the behavior of the amorphous component of the chalk stone of the Lebedinsky field during decarbonization. Nedelya nauki SPbPU: Materialy nauchn. konf. SPb.: Izd-vo Politekhn. un-ta, 2016. Part.1, p. 8-10 (in Russian).
  8. Kholmova M.A., Komarov V.I., Gur'ev A.V. High yield pulp. Ways to get it. Khimiya rastitel'nogo syr'ya. 2007. N 2, р. 5-12 (in Russian).
  9. Addadi L., Raz S., Weiner S. Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 2003. Vol. 15. N 12, p. 959-970.
  10. Andersson O. Experiment: Planning, Implementing and Interpreting. Wiley. 2012. 288 р. URL: https://doi.org/10.1002/
  11. (date of access 15.04.2017).
  12. Ihli J., Wong W.C., Noel E.H. et al. Dehydration and crystallization of amorphous calcium carbonate in solution and in the air. Nat. Commun. 2014. Vol. 5. N 1, p. 10.
  13. Palchik V., Hatzor Y.H. The influence of porosity on tensile and compressive strength of porous chalks. Rock Mechanics and Rock Engineering. 2004. Vol. 37. N 4, р. 331-341.
  14. Prokesch M.E., Euston C. Patent 20120100050 US. A1 C 04B 2/104. Production of calcined lime from natural chalk material in a rotary kiln. Publ. 26.04.2012.
  15. Risnes R., Flaageng O. Mechanical properties of chalk with emphasis on chalk-fluid interactions and micromechanical aspects. Oil & Gas Science and Technology. 1999. Vol. 54. N 6, p. 751-758.
  16. Schmidt M.P., Ilott A.J., Phillips B.L., Reeder R.J. Structural changes upon dehydration of amorphous calcium carbonate. Cryst. Growth Des. 2014. Vol. 14. N 3, p. 938-951.
  17. Andreassen K.A., Foged N.N., Hededal O., Krogsbøll A. Temperature Influence on Rock Mechanical Properties: High-Porosity, Low-Cemented Chalk. Kgs. Lyngby: Technical University of Denmark (DTU). 2011, p. 126.

Similar articles

DEVELOPMENT AND RESEARCH OF FORMATION TECHNOLOGIES ON SPECIALIZED PRESSES WITH SUBSEQUENT SINTERING OF HIGH-DENSITY DETAILS FROM IRON-BASED POWDERS
2019 A. M. Dmitriev, N. V. Korobov, A. Zh. Badalyan
APPLICATION OF AUTOMATION SYSTEMS FOR MONITORING AND ENERGY EFFICIENCY ACCOUNTING INDICATORS OF MINING ENTERPRISES COMPRESSOR FACILITY OPERATION
2019 A. V. Ugolnikov, N. V. Makarov
CALCULATION OF ELASTOVISCOPLASTIC DISPLACEMENT OF WELL WALLS IN TRANSVERSAL AND ISOTROPIC ROCKS
2019 A. G. Gubaidullin, A. I. Moguchev
SOME ASPECTS OF ANTIFRICTION COATINGS APPLICATION EFFICIENCY BY MEANS OF FINISHING NONABRASIVE ANTIFRICTION TREATMENT
2019 M. I. Sidorov, A. V. Ragutkin, M. E. Stavrovskij
AMT SOUNDINGS IN THE DEAD BAND WITHIN THE CHUKOTKA REGION (RUSSIAN FAR EAST)
2019 E. Yu. Ermolin, O. Ingerov, A. A. Yankilevich, N. N. Pokrovskaya
LOW-DENSITY CEMENT COMPOSITIONS FOR WELL CEMENTING UNDER ABNORMALLY LOW RESERVOIR PRESSURE CONDITIONS
2019 N. I. Nikolaev, E. L. Leusheva