Submit an Article
Become a reviewer
Vol 233
Pages:
518
Download volume:

ANALYSIS OF POSSIBLE ENHANCEMENT OF PROPERTIES OF VK15 MATERIAL USED FOR DRILLING TOOLS

Authors:
Yu. A. Kurganova1
K. S. Panina2
P. S. Beshenkov3
About authors
  • 1 — Bauman Moscow State Technical University
  • 2 — Bauman Moscow State Technical University
  • 3 — OJSC «Zavod Tekhnicheskoy Keramiki»
Date submitted:
2018-05-04
Date accepted:
2018-07-23
Date published:
2018-10-25

Abstract

Traditionally, when drilling hard and abrasive rocks, it is recommended to use a tungsten-cobalt hard alloy VK15. The analysis of information on the possibility of improving the potential of the material has demonstrated the existence of mechanisms that provide structural transformations that enhance its strength, hardness and toughness. The use of such technology instead of traditional methods will lead to an increase in the operating efficiency and durability of the tool. During the work, experimental samples of alloy VK15 were obtained by sintering in four different modes. Then their properties were analyzed. The results of the metallographic study carried out on the «Carl Zeiss» microscope made it possible to estimate the distribution of tungsten carbide grains in cobalt bon and show the grinding of the carbide phase. Thus, with traditional sintering, the amount of tungsten carbide grains with an average size of less than 1 μm in diameter from the entire size range reaches 19.5 %, while after additional heat treatment with a holding time of 1280 °C, the value was 41.5 %; 900 °C – 59.1 %; 600 °С – 54.5 %. The maximum improvement results were the following: hardness by 18 %, a coercive force by 49 %, and crack resistance by 11 % of the traditional alloy, there were achieved at 900-1280 °C. A hypothesis has been put forward on the formation of additional structural elements not detected by the methods of optical metallography. Studies of the topology and structure of the samples on an atomic force microscope confirmed the presence of nanoscale inclusions from 20 to 40 nm (presumably tungsten carbide) in a cobalt bond. For VK15, comparative studies of properties and analysis of the microstructure of experimental samples obtained by the traditional sintering and modified technology have shown that the sintering mode at 900 °C is a priority. Thus, the developed technology, including the sintering of powders in a hydrogen stream up to 750 °C, from 750 to 1450 °C in vacuum, feeding at a maximum temperature of 1450 °C for 15 minutes of argon at a pressure of 60 bar, subsequent cooling to 900 °C and 1 hour exposure, can be recommended as the most rational conditions for revealing the potential of the material and providing an enhanced level of properties of the drilling tool.

10.31897/pmi.2018.5.518
Go to volume 233

References

  1. Влияние добавок керамических наночастиц на структурные параметры и свойства твердых сплавов / Ю.И.Гордеев, А.К.Абкарян, Г.М.Зеер, А.А.Лепешев // Вестник СибГАУ. 2013. № 3. С. 49-54.
  2. Захаров Д.А. Совершенствование состава, структуры, технологии и применения твердых сплавов в производстве буровых шарошечных долот: Автореф. дис... канд. техн. наук / Самарский государственный технический университет. Самара, 2014. 22 с.
  3. Новый твердый сплав с наноупрочненной связкой / И.Ю.Коняшин, Б.Рис, Ф.Лахманн, A.А.Maзилкин, Б.Б.Страумал // Материаловедение. 2010. № 3. С.38-40.
  4. Особенности уплотнения при спекании сплава ВН8М с добавками наноразмерного карбида вольфрама / Д.В.Федоров, О.В.Семенов, В.И.Румянцев, С.С.Орданьян // Порошковая металлургия и функциональные покрытия. 2014. № 3. С. 26-30. DOI: 10.17073/1997-308X-2014-3-26-30
  5. Панов В.С. Технология и свойства спеченных твердых сплавов / В.С.Панов, В.Н.Шуменко. М.: Изд-во МИСиС, 2013. 144 с.
  6. Панина К.С. Разработка технологии получения твердых сплавов с повышенными механическими свойствами на основе сплава ВК15 // Всероссийская научно-техническая конференция «Студенческая научная весна. Машиностроительные технологии»: Материалы конференции, 4-7 апреля, 2017 / МГТУ им. Н.Э.Баумана. М. URL: studvesna.ru?go=articles&id=1984 (дата обращения: 27.09.2017).
  7. Патент 2548846 РФ. Способ получения спеченных твердых сплавов / Ю.И.Гордеев. Опубл. 27.12.2011. Бюл. № 11.
  8. Патент 2534670 РФ. Способ упрочнения твердых сплавов / С.И.Богодухов. Опубл.10.12.2014. Бюл. № 34.
  9. Патент 2631548 РФ. Способ получения изделий из твердого сплава на основе карбида вольфрама / П.С.Бешенков, Р.Ю.Куфтырев. Опубл.27.09.2017 Бюл. № 27.
  10. Borovskii G.V. Nanostructured hard metals WC-Co produced from plasma chemical powders / G.V.Borovskii, Y.V.Blagoveshchenskii, A.V.Abramov // RWF Werbegesellschaft. Austria. 2009. Iss. 2. P. 224- 229.
  11. Bartha L. Investigation of hip-sintering of nanocrystalline WC/Co powder / L.Bartha, P.Atato, A.L.Toth // Materials. 2000. Iss. 32. P.23-26.
  12. Jia K. Microstructure, hardness, and toughness of nanostructured and conventional WC-Co composites / K.Jia, T.E.Fischer, B.Gallois // Nanostructural materials. 1998. Iss. 10. P. 875-891.
  13. Patent 20080179104 USA. Nano-reinforced WC-Co for improved properties / Y.Zhang. Opubl. 31.07.2008.
  14. Patent 20140023546 USA. Cemented carbide material / I.Yu.Konyashin, B.H.Ries, F.F.Lachmann. Opubl. 23.01.2014.
  15. Patent 6524366 USA. Method of Forming Nanograin Tungsten Carbide and Recycling Tungsten Carbide / P.Seegopaul, L.Gao. Opubl.25.02.2003.
  16. Tan G.L. Preparation and mechanical properties of nanostructured tungsten carbide alloys strengthened by carbon nanotubes / G.L.Tan, X.J.Wu, Z.Q.Li // MRS Proceedings. 2003. Iss. 788. P. 449.
  17. Z.Fang. Synthesis, sintering and mechanical properties of nanocrystallaine cemented tungsten carbide / Z.Fang, X.Wang, T.Ryu // Metals Hard Mater. 2009. Iss. 27. P. 288-299.

Similar articles

COST ASSESSMENT OF GOLD ORE DEPOSITS ADJUSTED FOR CAPITAL INVESTMENTS
2018 A. Yu. Zaitsev
CALCULATIONS OF DYNAMIC OPERATING MODES OF ELECTRIC DRIVES OF SELF-PROPELLED MINING MACHINES
2018 E. K. Eshchin
JUSTIFICATION OF REPRESENTATIVE DATA VOLUME OF POROSITY AND PERMEABILITY PROPERTIES FOR OBTAINING STATISTICALLY RELIABLE PETROPHYSICAL CONNECTIONS
2018 A. A. Abrosimov, E. V. Shelyago, I. V. Yazynina
METHOD FOR FORECAST OF SURFACE DEFORMATION DURING EXCAVATION OPERATIONS IN RESTRAINT URBAN CONDITIONS USING THE SLURRY TRENCH TECHNIQUE
2018 P. A. Demenkov, L. A. Goldobina, O. V. Trushko
SCIENTIFIC AND METHODICAL APPROACHES TO INCREASE PROSPECTING EFFICIENCY OF THE RUSSIAN ARCTIC SHELF STATE GEOLOGICAL MAPPING
2018 A. S. Egorov, I. Yu. Vinokurov, A. N. Telegin
OBTAINING INTERMETALLIC COMPOUNDS IN Al–Ti–Zn SYSTEM
2018 V. V. Kaminskii, S. A. Petrovich, V. A. Lipin