Submit an Article
Become a reviewer
I. N. Pyagai
I. N. Pyagai
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences
Institute of Solid State Chemistry of the Ural Branch of the Russian Academy of Sciences

Articles

Geotechnical Engineering and Engineering Geology
  • Date submitted
    2023-05-17
  • Date accepted
    2023-08-17
  • Online publication date
    2023-09-08
  • Date published
    2023-10-27

Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia

Article preview

Russia is one of the world's leading steel producers, while about 33 % of production comes from the scrap remelted in arc steelmaking furnaces. The graphitized electrodes of SHP and UHP grades, mainly consisting of needle coke, are used for high current loads and temperatures in furnaces. USA, Japan, Korea, and China are focused on needle coke production, where coal (tar and pitch) and petroleum (decantoil), by-products of metallurgical factories and oil refineries, are used as raw materials. Russia's annual demand for needle coke is approximately 100 thousand tons, but all of it is covered by imports. Russia's raw material potential, established by the authors of the article, is more than 5 million tons per year and includes decantoil, coal tar and pitch, and heavy pyrolysis tar. The results of obtaining needle coke from decantoil and heavy pyrolysis tar are given below. The prototypes of needle coke were produced on specially designed delayed coking laboratory units (loading up to 0.25 and 80 kg). Raw materials were modified according to the original technology of Saint Petersburg Mining University, the convergence of target properties of which is confirmed by the results of quality analysis of the obtained needle coke, including after 100-fold scaling. The electrodes were molded from the obtained coke. After standardized stages of firing, mechanical processing and graphitization at 2,800-3,000 °C, the coefficient of linear thermal expansion was less than 1 × 10–6 К–1, and the value of specific electrical resistance was 7.1-7.4 μOhm, which proves that the obtained carbon material corresponds in quality to Japanese analogues and Super Premium needle coke.

How to cite: Rudko V.А., Gabdulkhakov R.R., Pyagai I.N. Scientific and technical substantiation of the possibility for the organization of needle coke production in Russia // Journal of Mining Institute. 2023. Vol. 263. p. 795-809. EDN KYNHWL
Geotechnical Engineering and Engineering Geology
  • Date submitted
    2022-03-22
  • Date accepted
    2022-11-17
  • Date published
    2023-02-27

Development of composition and study of sorbent properties based on saponite

Article preview

The development of a comprehensive approach to preventing the pollution of natural objects is necessary due to the high requirements of environmental legislation for the discharge of industrial wastewater. Adsorbents are used in various industries to extract heavy metals from wastewater. In this study the possibility of using saponite clay as a raw material for the production of sorbent for the extraction of copper ions Cu 2+ from industrial wastewater is considered, a recipe and technology of sorbent production are developed, and its chemical composition is established. It has been established that the optimum temperature for heat treatment of the sorbent and corresponds to 550 ºC, since at this temperature saponite extrudates acquire strength (strength 34.1 kg/mm 2 ) and textural properties (specific surface area of pellets 22.803 m 2 /g), allowing them to be used as sorbents. The kinetics of molecular adsorption was studied using model solutions of copper (II) sulfate. The extraction efficiency of copper (II) ions from the model solutions is 93 %. Extraction efficiency of copper (II) ions from copper plating wastewater reaches 94 %. SEM results confirm the presence of metal on the sorbent surface.

How to cite: Zubkova O.S., Pyagay I.N., Pankratieva K.A., Toropchina M.A. Development of composition and study of sorbent properties based on saponite // Journal of Mining Institute. 2023. Vol. 259. p. 21-29. DOI: 10.31897/PMI.2023.1
Metallurgy and concentration
  • Date submitted
    2015-08-27
  • Date accepted
    2015-10-05
  • Date published
    2016-02-01

Processing of alumina production red mud with recovery of scandium concentrate

Article preview

The chemical and technological principles of scandium recovery from red mud of alumina production with the use of flue gases from sintering furnaces have been developed. The optimal conditions of hydrochemical processes of successive removal of impurities for the production of scandium concentrate with simultaneous obtaining of titanium-containing product have been worked out on a pilot plant.

How to cite: Pyagai I.N., Kozhevnikov V.L., Pasechnik L.A., Skachkov V.M. Processing of alumina production red mud with recovery of scandium concentrate // Journal of Mining Institute. 2016. Vol. 218. p. 225.