Фторсодержащие сточные воды – одна из главных проблем добывающей и перерабатывающей промышленностей. Добыча, обогащение, сернокислотное вскрытие апатитового концентрата – все эти процессы сопровождаются образованием огромного количества сточных вод с повышенным содержанием фторидов, которые представляют серьезную опасность для окружающей среды. Традиционные методы не всегда позволяют достичь требуемых нормативов сброса, что в свою очередь диктует необходимость поиска альтернативных реагентов. Основной целью данной работы является оценка возможности использования отходов горно-металлургического комплекса (фосфомел, магнезиальный лом, пыль установок газоочистки) в качестве реагентов-осадителей первого этапа удаления фторид-ионов с последующей доочисткой комплексными титансодержащими коагулянтами. Проведены эксперименты по подбору реагентов и их дозировок, применение которых позволит достичь наименьших остаточных концентраций фторидов в воде. Установлено, что применение гидроксидов кальция/магния не позволяет достигать нормативов по остаточному содержанию фторид-аниона. Определено, что для достижения максимальной эффективности осаждения необходим 30 %-ный избыток реагентов-осадителей. Доказана возможность применения крупнотоннажных минеральных отходов в качестве реагента-осадителя фторид-иона, при этом эффективность очистки составила 94 % для фосфомела, 90 % для лома магнезиальных огнеупоров и 99 % для установок газоочистки. Доказана эффективность применения комплексных титансодержащих коагулянтов для дефторивания воды по сравнению с традиционными коагулянтами (оксихлорид/сульфат алюминия). Применение комплексного реагента позволяет не только существенно сократить расход коагулянта и минимизировать остаточное содержание фторид-аниона, но и существенно интенсифицировать процессы седиментации (в 1,5-1,75 раза) и фильтрации (1,25-1,5 раза) коагуляционных шламов. Разработанная концепт-схема дефторирования сточных вод с использованием крупнотоннажных отходов и комплексных титансодержащих реагентов позволяет существенно снизить уровень негативного воздействия на окружающую среду и сделать шаг к реализации концепции экономики замкнутого цикла.
Лейкоксен-кварцевый концентрат – крупнотоннажный побочный продукт разработки Тиманского нефтетитанового месторождения (нефтенасыщенные песчаники), не нашедший в настоящее время промышленного применения. Высокое содержание соединений титана (до 50 % по массе) и отсутствие промышленных, рентабельных и безопасных технологий его переработки определяет высокую актуальность работы. Традиционные технологии переработки позволяют повысить концентрацию TiO2, однако являются лишь подготовкой к сложному и опасному селективному хлорированию. Изучен процесс пирометаллургической конверсии лейкоксен-кварцевого концентрата в титанаты алюминия и магния. Установлено, что температура твердофазной реакции в системе Al2O3-TiO2-SiO2, необходимая для синтеза титаната алюминия (Al2TiO5), составляет 1558 °С, а для системы MgO-TiO2-SiO2 – 1372 °С. Масштабирование процесса позволило синтезировать значимые количества образцов титанатсодержащих продуктов, фазовый состав которых был исследован методом рентгенофазового анализа. В составе продуктов идентифицированы две основные фазы: 30 % титанат алюминия/магния и 40 % диоксид кремния. В продуктах пирометаллургической переработки в присутствии алюминия также обнаружены фазы псевдобрукита (3,5 %) и титанита (0,5 %). Установлено, что в магнийсодержащей системе возможно образование трех титанатов магния: MgTiO3 – 25, Mg2TiO4 – 35, MgTi2O5 – 40 %. Эксперименты по сернокислому выщелачиванию образцов продемонстрировали повышенную степень извлечения соединений титана в процессе сернокислотной переработки. Предложена комплексная концепт-схема переработки лейкоксен-кварцевого концентрата с получением широкого спектра потенциальных продуктов (коагулянтов, катализаторов, материалов для керамической промышленности).