В связи с активным освоением территорий криолитозоны в условиях изменения климата под воздействием естественных и антропогенных факторов возрастают риски снижения устойчивости зданий и сооружений. Основные причины: потеря несущей способности мерзлых грунтов, различные геокриологические процессы, ошибки на стадиях проектирования, строительства и эксплуатации объектов. В настоящее время одна из главных задач при проведении исследований и промышленных работ в криолитозоне – контроль и при необходимости управление тепловыми процессами в толще вечной мерзлоты, взаимодействующей с сооружениями. В статье анализируется накопленный положительный опыт применения различных технологий на различных стадиях жизненного цикла как гражданских, так и промышленных объектов для устранения и (или) предупреждения их деформации или полного разрушения под влиянием изменения климата. Исследованы методы стабилизации мерзлоты, применяемые в нефтегазовой отрасли при создании промышленной инфраструктуры месторождений, – промораживание (охлаждение) грунтов оснований в процессе строительства на неоднородных основаниях. Рассмотрено решение задач минимизации осложнений при размещении добывающих скважин в условиях криолитозоны Ямальского полуострова на примере нефтегазоконденсатного месторождения и восстановления температурного режима многолетнемерзлых грунтов на участках крановых узлов магистральных газопроводов. Проведена оценка применяемых методов поддержания тепловых режимов производственной и жилой инфраструктуры внутри муниципалитетов, обеспечивающих функционирование топливно-энергетического комплекса Российской Федерации в Арктике. Создание систем термостабилизации в основаниях зданий и сооружений, строящихся и эксплуатируемых на многолетнемерзлых грунтах, позволяет в полной мере использовать высокую прочность и малую деформируемость мерзлых грунтовых массивов и обеспечить долгосрочные планы государства по промышленному освоению Арктики.
В статье рассматриваются пути достижения технологического суверенитета отраслями топливно-энергетического комплекса (ТЭК) России в условиях неблагоприятной геополитической конъюнктуры, косвенно связанной с расширением географии недружественных стран и вводимыми ими ограничениями. Определены цели, задачи, описаны базовые методы исследования при разработке методологии обеспечения технологического суверенитета ТЭК России. Выявлены перспективные направления развития инновационных технологий в российском ТЭК в долгосрочной перспективе и наиболее эффективные с точки зрения достижения технологического суверенитета форматы сотрудничества промышленности, бизнеса, науки и государства. Излагаются принципы, подходы и конкретные предложения, на основе которых наиболее целесообразно строить дальнейшую работу по укреплению технологического суверенитета. В частности, выдвигается идея формирования новых организационных структур на уровне Правительства России, которые стали бы локомотивом реализации инноваций и импортозамещения. В качестве успешного примера апробирования методологии достижения технологического суверенитета топливно-энергетического комплекса рассматривается запущенный проект по созданию отечественного флота для гидравлического разрыва пласта.
Развитие высокотехнологичных скважинных электронных измерительных систем направлено на создание современного оборудования: телеметрии, оборудования для геофизических измерений в скважине, архитектура которых подразделяется на базовую (имеющую измерительные каналы гамма-каротажа и индуктивного сопротивления) и расширенную (имеющую радиоактивные, акустические, магнитно-резонансные и термобарометрические измерительные каналы, в том числе азимутальные методы исследования). Разрабатываются наддолотные измерительные модули, роторно-управляемые системы, совершенствуются каналы передачи информации из скважины на земную поверхность и наоборот, создается специализированное наземное оборудование с глубоко интегрированным программным обеспечением. Различные измерительные модули производятся разными компаниями, в связи с чем возникает неопределенность в возможности сопряжения измерительных модулей компаний-производителей в единый скважинный измерительный комплекс. В статье представлен анализ готовности российских нефтесервисных компаний к производству скважинного и наземного оборудования для бурения российских наклонно-направленных нефтяных и газовых скважин, отвечающего современным требованиям по точности, ресурсу и условиям эксплуатации. Рассмотрена возможность создания полностью российского скважинного высокотехнологичного оборудования и необходимые ресурсы, риски и меры их митигирования при создании современного скважинного измерительного комплекса.
В статье рассматриваются проблемы, связанные с метрологическим обеспечением аппаратуры для геофизических исследований, вопросы обеспечения единства скважинных измерений, создания россий ских эталонов для калибровки скважинной аппаратуры при определении коэффициентов пористости и нефте-, га зо-, водонасыщенности, определения параметров дефектов при цементировании скважин и технического состояния обсадных колонн и потока вода – нефть – газ. Исследованы задачи создания полноценных методик измерений параметров месторождений нефтегазовых традиционных и с трудноизвлекаемыми запасами. Определены ключевые направления развития российского метрологического обеспечения геофизических измерений в скважине. Обозначены задачи, которые необходимо решить для создания метрологического обеспечения геофизических исследований в скважине как отрасли, соответствующей международным стандартам. Обоснована целесообразность создания Российского геофизического центра метрологии и сертификации, необхо димость разработки новой и актуализации имеющейся нормативной базы, что позволит российской геофизи ке выйти на уровень мировых лидеров в области геофизических исследований.