The issue of improving the energy-efficiency of container-based gas chemical plants for methanol production in field conditions is considered. The relevance of the direction is determined by the necessity for development of remote Arctic hydrocarbon fields. The object of research is energy-efficient conversion of waste gases energy and surplus thermal energy in small-scale system of methanol production using technology of synthesis gas generation by non-catalytic partial oxidation of natural gas. Approaches to the design and analysis of structural solutions for microturboexpander units are considered. A technique combining traditional approaches to the calculation of equipment and modeling by the finite element method in ANSYS is proposed. The developed methodology facilitates calculation of design parameters for microturboexpanders and allows taking into account peculiarities of working medium, thermobaric conditions and gas flow characteristics.
The article deals with the problems of complex power supply of the well construction process in adverse climatic conditions. An option of associated petroleum gas utilization in power units for drilling operations is offered. The method of calculating heat losses of technological objects and required heating capacity for maintaining working temperature is given. A combined heat and power scheme enabling simultaneous electric and heat supply of oilfield objects with the use of associated petroleum gas as an energy source for power generation units is developed. Implementation of such a scheme guarantees power structure functioning without downfalls of produced en-ergy during the year, thus maintaining high efficiency of overall power generation.