Submit an Article
Become a reviewer
N. I. Gusev
N. I. Gusev
A.P. Karpinsky Russian Geological Research Institute
A.P. Karpinsky Russian Geological Research Institute

Articles

Geology
  • Date submitted
    2023-11-10
  • Date accepted
    2024-05-02
  • Online publication date
    2024-08-26
  • Date published
    2024-08-26

Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting

Article preview

The Saltakh Massif is located in the northern Anabar Shield, in the Saltakh shear-zone. It consists of two-pyroxene schists and plagiogneisses metamorphosed under granulite-facies conditions. Their chemical composition is consistent with that of a differentiated series of rocks ranging from gabbro to tonalites with abundant alaskitic gneissose granite veins and bodies. The rocks are mainly high-potassium (K 2 O/Na 2 O > 0.50), high-magnesium (mg# 50-70), low-titanium (TiO 2 0.35-1.31 wt.%) with low TiO 2 concentration in clino- and orthopyroxene. Normative olivine makes up 6-9 % of metagabbroic rocks. The rocks display well-defined negative Ti, Nb, Ta, and P anomalies typical of subduction magmatism. The two-pyroxene gneisses show high Sr/Y ratios of 67.6-88 and (La/Yb) N of 24.8-25.6. Saltakh rocks are part of a shoshonite series, as indicated by Nb/La, La/Yb, Th/Nb and Ce/Yb ratios. All the rocks display positive ε Nd ( T ) values of 1.9-4.1 and ε Sr ( T ) of 0.77-17.8 indicative of a mantle source of magma and T ( Nd )DM of 2,20-2,26 Ga. U-Pb zircon dating (SHRIMP II) has shown that the protoliths of Saltakh melanocratic rocks were dated at 2100-2086 Ma, and those of two-pyroxene plagiogneisses of tonalite composition were dated at 2025±7 Ma. Alaskitic gneissose granites were dated at 1969±7 Ma. The study of the trace element composition of zircon has revealed general enrichment in LREE. High LREE concentrations are due to secondary zircon alterations and the shoshonitic pattern of the melt, the high-temperature conditions of crystallization, and an anomalous fluid regime. The geodynamic setting in which the Saltakh Massif was formed was consistent with a pericontinental magmatic arc. The formation of alaskitic gneissose granites was due to anatexis provoked by later collision processes. Saltakh magmatic rocks were formed simultaneously with magmatic rocks from the Khapchan prospect which occur farther south, and were studied earlier (2095±10 Ma tholeiitic metadiorites and 2030±17 Ma calc-alkaline metatonalites). We interpret them as part of a metamorphosed juvenile Paleoproterozoic suprasubduction complex.

How to cite: Gusev N.I., Romanova L.Y. Paleoproterozoic Saltakh Pluton, Anabar Shield: mineralogical composition, age and a geodynamic setting // Journal of Mining Institute. 2024. p. EDN SRITGO
Geology
  • Date submitted
    2023-11-02
  • Date accepted
    2024-03-05
  • Online publication date
    2024-04-17
  • Date published
    2024-08-26

The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon

Article preview

Based on the isotopic-geochemical analyses of zircons from granites of the Belokurikhinsky massif in the Gorny Altai using the U-Pb method, the ages of three intrusion phases have been determined for the first time: the age of the first phase refers to the time interval of 255-250 Ma, the second and the third phases have similar ages of about 250 Ma. The formation time of the Belokurikhinsky massif is estimated as not exceeding 5-8 Ma. The δ18O values for zircons from granites of the second and the third intrusion phases average around 11.5-12.0 ‰, indicating a significant contribution of a crustal component in the formation of the parent melts for granites of these phases. The crystallization temperature values of the zircons by the Ti-in-zircon thermometer for three phases range from 820 to 800 °C. The P-T crystallization parameters of titanite from the first phase, determined using a titanite thermobarometer, average around 770 °C and 2.7 kbar. The zircons from the first phase mostly exhibits geochemical characteristics of typical magmatic zircons. The zircons from the second and the third intrusion phases either may be unaltered magmatic zircons or enriched in incompatible elements (LREE, Th, U, Ti, Ca, etc.) due to fluid influence, resembling hydrothermal-metasomatic type zircons in terms of their geochemical characteristics. A number of zircon grains from the second and the third phases of granites demonstrate anomalous geochemical characteristics – the REE distribution spectra atypical for zircons (including “bird's wing” type spectra with oppositely tilted of light and heavy REE distribution profiles), as well as significantly higher contents of certain trace elements compared to other varieties. Such an enriched zircon composition and wide variations in the incompatible element content are due to non-equilibrium conditions of zircon crystallization and evolution of the fluid-saturated melt composition during the final stages of the massif formation.

How to cite: Skublov S.G., Levashova E.V., Mamykina M.E., Gusev N.I., Gusev A.I. The polyphase Belokurikhinsky granite massif, Gorny Altai: isotope-geochemical study of zircon // Journal of Mining Institute. 2024. Vol. 268. p. 552-575. EDN RGKCIJ
Geology
  • Date submitted
    2017-09-02
  • Date accepted
    2017-11-22
  • Date published
    2018-02-25

Age and metamorphic conditions of the granulites from Capral-Jegessky synclinoria, Anabar shield

Article preview

The paper presents the results of the isotope, geochemical and thermobarometric study of plagio-crystalline schist containing in the Upper Anabar series of the Anabar Shield. Granulite complexes of the paleoplatforms are the most important issue in addressing the fundamental problem of the Earth's crust origin and its composition. The early stages of crust formation which correspond to the deeply metamorphosed rocks of the platform basements, available for study within the shields, are of particular interest. The study of the age and metamorphic conditions of granulites by the case of the Upper Ananbar series allows specifying the stages the Anabar Shield's ancient crust formation. Isotope-geochemical (U-Pb geochronology for zircon and Sm-Nd for garnet-amphibole-WR) and thermoba-rometric (Theriak-Domino) studies of plagio-crystalline schist allowed to identify two Paleoproterozoic metamorphism stages within the territory of the Anabar Shield with an age of about 1997 and 1919 million years. The peak conditions of granulite metamorphism are determined as 775±35 С and 7.5±0.7 kbar, the parameters of the regressive stage are 700  C and 7 kbar. The sequence of the rocks metamorphic transformations can be assumed: high-thermal metamorphism of the granulite facies (T ≤ 810  C) and subsequent sub-isobaric (about 7 kbar) cooling to 700  C with a water activity increase and formation of Grt-Amp paragenesis corresponding to the transition from the granulite to amphibolite facies. Data on the REE and other trace elements distribution in zircon and rock-forming minerals obtained by the ion microprobe analysis contribute significantly to the isotope-geochemical data interpretation. 

How to cite: Sergeeva L.Y., Berezin A.V., Gusev N.I., Skublov S.G., Melnik A.E. Age and metamorphic conditions of the granulites from Capral-Jegessky synclinoria, Anabar shield // Journal of Mining Institute. 2018. Vol. 229. p. 13. DOI: 10.25515/PMI.2018.1.13